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Abstract: We study the dispersion relations of mesons in a particular hot strongly coupled

supersymmetric gauge theory plasma. We find that at large momentum k the dispersion

relations become ω ≃ v0k+a+b/k+. . ., where the limiting velocity v0 is the same for mesons

with any quantum numbers and depends only on the ratio of the temperature to the quark

mass T/mq. We compute a and b in terms of the meson quantum numbers and T/mq. The

limiting meson velocity v0 becomes much smaller than the speed of light at temperatures

below but close to Tdiss, the temperature above which no meson bound states at rest in the

plasma are found. From our result for v0(T/mq), we find that the temperature above which

no meson bound states with velocity v exist is Tdiss(v) ≃ (1− v2)1/4Tdiss, up to few percent

corrections. We thus confirm by direct calculation of meson dispersion relations a result

inferred indirectly in previous work via analysis of the screening length between a static

quark and antiquark in a moving plasma. Although we do not do our calculations in QCD,

we argue that the qualitative features of the dispersion relation we compute, including in

particular the relation between dissociation temperature and meson velocity, may apply

to bottomonium and charmonium mesons propagating in the strongly coupled plasma of

QCD. We discuss how our results can contribute to understanding quarkonium physics in

heavy ion collisions.
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1. Introduction

The radii of the tightly bound heavy quark-antiquark systems of the charmonium (J/Ψ, Ψ′,

χc, . . . ) and bottomonium (Υ, Υ′, . . . ) families provide a unique set of decreasing length

scales in strong interaction physics. On general grounds, it is expected that the attraction

between a heavy quark and an anti-quark is sensitive to the medium in which the bound

state is embedded, and that this attraction weakens with increasing temperature. In the

context of ultra-relativistic nucleus-nucleus collisions, the radii of some quarkonia states

correspond to fractions of the natural length scale displayed by the medium produced in

heavy ion collisions, namely fractions of its inverse temperature 1/T . Such scale consider-

ations support the idea that measurements of the medium-modification or dissociation of

quarkonia can characterize properties of the QCD matter produced in heavy ion collisions.
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Matsui and Satz were the first to highlight the role of quarkonium in the study of hot

QCD matter [1]. They suggested that J/Ψ-suppression is a signature for the formation of

deconfined quark-gluon plasma (QGP). More precisely, they argued that in comparison to

proton-proton or proton-nucleus collisions, the production of J/Ψ mesons should be sup-

pressed if quark-gluon plasma is formed in sufficiently energetic nucleus-nucleus collisions,

since the screened interaction of a c and a c̄ in QGP would not bind them [1]. The theoret-

ical basis for this argument has been clarified considerably within the last two decades [2].

Model-independent calculations of the static potential between a heavy quark and anti-

quark have been performed in lattice-regularized QCD, valid at strong coupling [3 – 8]. In

lattice calculations without dynamical quarks, at temperature T = 0 and large separation

L this potential rises linearly with L, consistent with confinement. At nonzero tempera-

ture, the potential weakens and levels off at large distances; with increasing temperature,

the distance at which this screening occurs decreases. This behavior of the static potential

has been mapped out for hot QCD matter both without [4] and with [5, 6] dynamical

quarks. However, the physical interpretation of static potentials at finite temperature rests

on additional assumptions. For instance, even if a potential supports a bound state with

several MeV binding energy, it remains unclear which physics can be attributed to such

a state in a heat bath of ∼ 200 MeV temperature. Such issues do not arise in a discus-

sion of quarkonium mesons based directly on their Minkowski space spectral functions or

dispersion relations. In recent years, the spectral functions have been characterized by

lattice calculations of the Euclidean correlation functions to which they are analytically

related, again in hot QCD matter both without [9] and with [10] dynamical quarks. The

use of these calculations of finitely many points on a Euclidean correlator to constrain

the Minkowski space spectral function of interest via the Maximum Entropy Method re-

quires further inputs — for example smoothness assumptions or information on the analytic

properties of the spectral function [9, 10]. At high enough temperatures that quark-gluon

plasma becomes weakly coupled, a complementary analytical approach based upon re-

summed hard-thermal-loop perturbation theory becomes available [11]. These calculations

have the advantage that analytical continuation from Euclidean to Minkowski space does

not introduce additional uncertainties, but it remains unclear to what extent they can

treat a strongly coupled quark-gluon plasma. In broad terms, all these calculations sup-

port the qualitative picture behind the original suggestion of Matsui and Satz that color

screening in the quark-gluon plasma is an efficient mechanism for quarkonium dissociation.

In addition, these studies support the picture of a sequential dissociation pattern [12], in

which loosely bound, large, quarkonia such as the Ψ′ and χc cease to exist close to Tc, the

temperature of the crossover between hadronic matter and quark-gluon plasma, whereas

more tightly bound, smaller, states dissociate only at significantly higher temperatures. In

particular, J/Ψ mesons continue to exist for a range of temperatures above the QCD phase

transition and dissociate only above a temperature that lies between 1.5Tc and 2.5Tc [12].

The observation of bound-state-specific quarkonia suppression patterns could thus provide

detailed information about the temperature attained in heavy ion collisions.

On the experimental side, there are by now data from the NA50 and NA60 exper-

iments at the CERN SPS and from the PHENIX experiment at RHIC demonstrating
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that the production of J/Ψ mesons is suppressed in ultra-relativistic nucleus-nucleus col-

lisions compared to proton-proton or proton-nucleus collisions at the same center of mass

energy [13]. However, due to lack of statistics and resolution, an experimental charac-

terization of other charmonium states (Ψ′, χc, . . . ) has not yet been possible at RHIC,

and bottomonium states have not yet been characterized in any nucleus-nucleus collisions.

Moreover, the observed yield of J/Ψ mesons is expected to receive significant decay con-

tributions from Ψ′ and χc, meaning that the observed suppression of J/Ψ mesons may

originate only in the suppression of the larger Ψ′ and χc states [12], or may indicate a sup-

pression in the number of primary J/Ψ mesons themselves in addition. Thus, at present

an experimental test of the sequential quarkonium suppression pattern is not in hand. It is

expected that the LHC heavy ion program will furnish such a test, since two LHC exper-

iments [14] have demonstrated capabilities for discriminating between the different states

of the charmonium and bottomonium families.

From the existing data in ultra-relativistic heavy ion collisions and their phenomeno-

logical interpretation, it has become clear that an unambiguous characterization of color

screening effects in the quarkonium systems requires good experimental and theoretical

control of several confounding factors. These include in particular control over the spatio-

temporal evolution of the medium, control over the time scale and mechanism of quarko-

nium formation, as well as control over the effects of quarkonium propagation through the

medium. We now comment on these three sources of uncertainty in more detail:

First, there is ample evidence by now that the systems produced in ultra-relativistic

heavy ion collisions display effects of position-momentum correlated motion (a.k.a. flow),

which are as important as the effects of random thermal motion [15]. Moreover, the energy

density achieved in these collisions drops rapidly with time as the matter expands and

falls apart after approximately 10 fm/c. As a consequence, the modeling of quarkonium

formation in heavy ion collisions cannot be limited to a description of heavy quark bound

states in a heat bath at constant temperature (which is the information accessible in ab

initio calculations in lattice-regularized QCD). The effects of a rapid dynamical evolution

during which the relevant degrees of freedom in the medium change from partonic to

hadronic must be taken into account.

Second, regarding the formation process, the conversion of a heavy quark pair pro-

duced in a hard collision into a bound quarkonium state is not fully understood, even in

the absence of a medium. There are different production models, which all have known

limitations and for which a systematic calculation scheme remains to be fully established

(for a short review of these issues, see [16]). The need for further clarification of the vacuum

case has even led to suggestions that nuclear matter could serve as a filter to distinguish

between different production mechanisms [17, 18]. However, it has also been pointed out

that there may be a novel quarkonium production mechanism operating only in ultra-

relativistic heavy ion collisions at RHIC and at the LHC [19]: charm quarks may be so

abundant in these collisions that c and c̄ quarks produced separately in different primary

hard scattering interactions may find each other and combine, contributing significantly

to charmonium production at soft and intermediate transverse momentum. To a lesser

extent, this mechanism may also contribute to the production of Upsilon mesons. Iden-

– 3 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
9

tifying and characterizing such a novel formation process is of considerable interest, since

recombination is likely to be quadratically sensitive to the phase space density of charm

and thus to properties of the produced matter. On the other hand, if realized in nature

recombination also implies that quarkonium spectra at soft and intermediate transverse

momenta are determined predominantly during the late hadronization stage and cannot

be viewed as probes which test color screening in the quark gluon plasma. This would

indicate that the high transverse momentum regime (say above 5-8 GeV) of quarkonium

spectra, which should not be significantly affected by recombination, is better suited for

tests of the fundamental color screening effects predicted by QCD. However, the sensi-

tivity of high transverse momentum spectra to properties of the medium remains to be

established. In particular, quarkonium formation or dissociation proceeds on a time scale

comparable to the size of the bound state in its rest frame, meaning that quark-antiquark

pairs with very high transverse velocity may escape the finite-sized droplet of hot matter

produced in a heavy ion collision before they have time to form a meson, meaning in turn

that screening effects cease to play a role in quarkonium production above some very high

transverse momentum [20]. At lower transverse momenta, where screening does play a

role, one must nevertheless understand for how long quarkonium is exposed to the medium

and how readily it dissociates if moving relative to that medium. For quarkonium at high

transverse momentum, the time of exposure to the medium depends on the geometry of

the collision region, which determines the in-medium path length, and it depends on the

propagation velocity. The results contained in this paper give novel input to modeling

this process by demonstrating that the real part of the finite temperature quarkonium

dispersion relation can differ significantly from the vacuum one, and can imply a limiting

quarkonium propagation velocity which is much smaller than c, the velocity of light in

vacuum. Our results indicate that at temperatures close to but below that at which a

given quarkonium state dissociates, these mesons move through a strongly coupled quark-

gluon plasma at a velocity that is much smaller than c even if they have arbitrarily high

transverse momentum. Certainly this means that the formation time arguments of [20]

will need rethinking before they can be applied quantitatively.

Third, we turn to the question of how the relative motion of quarkonium with respect to

the local rest frame of the medium affects quarkonium production. As discussed above, the

standard vacuum relation between the momentum of a quarkonium state and its velocity

can be altered in the presence of a medium and this effect may be phenomenologically

relevant. In addition, it is expected that a finite relative velocity between the medium and

the bound state enhances the probability of dissociation [21]. In a recent strong coupling

calculation of hot N = 4 supersymmetric QCD, three of us have have shown [22, 23] that

the sceening length Ls for a heavy quark-antiquark pair decreases with increasing velocity

as Ls(v, T ) ∼ Ls(0, T )/
√
γ, with γ = 1/

√
1 − v2 the Lorentz boost factor. This suggests

that a quarkonium state that is bound at v = 0 at a given temperature could dissociate

above some transverse momentum due to the increased screening, providing a significant

additional source of quarkonium suppression at finite transverse momentum. The present

work started from the motivation to establish how this velocity scaling manifests itself in

a description of mesons at finite temperature, rather than via drawing inferences from a
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calculation of the screening length that characterizes the quark-antiquark potential. This

motivation is analogous to that behind going from lattice QCD calculations of the static

potential in QCD to calculations of the Minkowski space meson spectral function. We

shall do our calculation in a different strongly coupled gauge theory plasma, in which we

are able to do this investigation for mesons with nonzero velocity. We shall see that the

critical velocity for the dissociation of quarkonium inferred from the velocity scaling of

the screening length also appears as a limiting velocity for high-momentum quarkonium

propagation in the hot non-abelian plasma.

Finally, the characterization of color screening also depends on the experimental and

theoretical ability to separate its effects on quarkonium production from effects arising

during the late time hadronic phase of the heavy ion collision. In particular, it has been

noted early on that significant charmonium suppression may also occur in confined hadronic

matter [24]. However, it has been argued on the basis of model estimates for the hadronic

J/Ψ dissociation cross section [25] that dissociation in a hadronic heat bath is much less

efficient than in a partonic one. The operational procedure for separating such hadronic

phase effects is to measure them separately in proton-nucleus collisions [26], and to establish

then to what extent the number of J/Ψ mesons produced in nucleus-nucleus collisions drops

below the yield extrapolated from proton-nucleus collisions [13, 27].

The above discussion highlights the extent to which an understanding of quarkonium

production in heavy ion collisions relies on theoretical modelling as the bridge between

experimental observations and the underlying properties of hot QCD matter. This task

involves multiple steps. It is of obvious interest to validate or constrain by first principle

calculations as many steps as possible, even in a simplified theoretical setting. The present

work is one of a number of recent developments [28] that explore to what extent techniques

from string theory, in particular the AdS/CFT correspondence, can contribute to under-

standing processes in hot QCD by specifying how these processes manifest themselves in

a large class of hot strongly coupled non-abelian gauge theories. Although it is not known

how to extend the AdS/CFT correspondence to QCD, there are several motivations for

turning to this technique. First, there are a growing number of explicit examples which

indicate that a large class of thermal non-abelian field theories with gravity duals share

commonalities such that their properties in the thermal sector are either universal at strong

coupling, i.e. independent of the microscopic dynamics encoded in the particular quantum

field theory under study, or their properties are related to each other by simple scaling

laws e.g. depending on the number of elementary degrees of freedom. This supports the

working hypothesis that by learning something about a large class of strongly coupled

thermal non-abelian quantum field theories, one can gain guidance towards understanding

the thermal sector of QCD. Second, the AdS/CFT correspondence allows for a technically

rather simple formulation of problems involving real-time dynamics. This is very difficult

in finite temperature lattice-regularized calculations, which exploit the imaginary time for-

malism. In particular, this is the reason why so far lattice QCD calculations treat only

static quark-antiquark pairs in the plasma, and why the only nonperturbative calculation

of the velocity dependence of quarkonium dissociation exploits the AdS/CFT correspon-

dence. Third, data from experiments at RHIC pertaining to many aspects of the matter
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produced in heavy ion collisions indicate that this matter is strongly coupled. Since the

AdS/CFT correspondence provides a mapping of difficult nonperturbative calculations in

a quantum field theory with strong coupling onto relatively simple, semi-classical calcu-

lations in a gravity dual, it constitutes a novel — and often the only — technique for

addressing dynamical questions about hot strongly coupled non-abelian matter, questions

that are being raised directly by experimental results on QCD matter coming from RHIC.

We have focussed in this section on the larger context for our results. In section

2, which is an introduction in a more narrow sense, we review the past results which

serve as an immediate motivation for our work, in particular the screening length that

characterizes the potential between a static quark and antiquark in a moving plasma wind.

Adding fundamental quarks with finite mass mq, and hence mesons, into N = 4 SYM

theory requires adding a D7-brane in the dual gravity theory, as we review in section

3. The fluctuations of the D7-brane are the mesons, as we review for the case of zero

temperature in section 3. In section 4 we set up the analysis of the mesons at nonzero

temperature, casting the action for the D7-brane fluctuations in a particularly geometric

form, written entirely in terms of curvature invariants. Parts of the derivation are explained

in more detail in appendix A. With all the groundwork in place, in section 5 we derive the

meson dispersion relations. In addition to obtaining them numerically without taking any

limits as has been done previously [29], we are able to calculate them analytically in three

limits: first, upon taking the low temperature limit at fixed k; second, upon taking the low

temperature limit at fixed kT ; and third, using insights from the first two calculations, at

large k for any temperature. At large k we find

ω = v0k + a+
b

k
+ . . . (1.1)

where v0 is independent of meson quantum numbers, depending only on T/mq. v0 turns

out to be given by the local speed of light at the “tip of the D7-brane”, namely the place in

the higher dimensional gravity dual theory where the D7-brane comes closest to the black

hole [29]. We compute a and b in terms of meson quantum numbers and T/mq. Our result

for the limiting velocity v0 for mesons at a given temperature T can be inverted, obtaining

Tdiss(v), the temperature above which no mesons with velocity v are found. We find that

up to few percent corrections, our result can be summarized by

Tdiss(v) = (1 − v2)1/4Tdiss , (1.2)

where Tdiss is the temperature at which zero-velocity mesons dissociate, obtained in previ-

ous work and introduced in section 3. As we discuss in section 2, our results obtained by

direct calculation of meson dispersion relations confirm inferences reached (in two different

ways) from the analysis of the screened potential between a static quark and antiquark in

a hot plasma wind. In section 6, we close with a discussion of potential implications of

these dispersion relations for quarkonia in QCD as well as a look at open questions. The

dispersion relations that we calculate in this paper describe how mesons propagate and so

affect a class of observables, but determining whether quarkonium meson formation from

a precursor quark-antiquark pair is suppressed by screening is a more dynamical question
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that can at present be addressed only by combining our calculation and the more heuristic

results of [23].

2. From screening in a hot wind to moving mesons

In the present work, we shall use the AdS/CFT correspondence to study the propagation

of mesonic excitations moving through a strongly coupled hot quark-gluon plasma. In this

section, however, we introduce what we have learned from the simpler calculation of the

potential between a test quark-antiquark pair moving through such a medium. This will

allow us to pose the questions that we shall address in the present paper.

The simplest example of the AdS/CFT correspondence is provided by the duality

between N = 4 super Yang-Mills (SYM) theory and classical gravity in AdS5×S5 [30]. N =

4 super Yang-Mills (SYM) theory is a conformally invariant theory with two parameters:

the rank of the gauge group Nc and the ’t Hooft coupling λ = g2
YMNc. In the large Nc

and large λ limit, gauge theory problems can be solved using classical gravity in AdS5×S5

geometry. We shall work in this limit throughout this paper.

In N = 4 SYM theory at zero temperature, the static potential between a heavy

external quark and antiquark separated by a distance L is given in the large Nc and large

λ limit by [31, 32]

V (L) = − 4π2

Γ(1
4)4

√
λ

L
, (2.1)

where the 1/L behavior is required by conformal invariance. This potential is obtained

by computing the action of an extremal string world sheet, bounded at r → ∞ (r being

the fifth dimension of AdS5) by the world lines of the quark and antiquark and “hanging

down” from these world lines toward smaller r. At nonzero temperature, the potential

becomes [33]

V (L, T ) ≈
√
λf(L) L < Lc

≈ λ0g(L) L > Lc . (2.2)

In (2.2), at Lc = 0.24/T there is a change of dominance between different saddle points

and the slope of the potential changes discontinuously. When L < Lc, the potential is

determined as at zero temperature by the area of a string world sheet bounded by the

worldlines of the quark and antiquark, but now the world sheet hangs down into a different

five-dimensional spacetime: introducing nonzero temperature in the gauge theory is dual

to introducing a black hole horizon in the five-dimensional spacetime. When L≪ Lc, f(L)

reduces to its zero temperature behavior (2.1). When L≫ Lc, g(L) has the behavior [34]

g(L) ∝ c1 − c2e
−mgapL , (2.3)

with c1, c2 and mgap constants all of which are proportional to T . This large-L potential

arises from two disjoint strings, each separately extending downward from the quark or

antiquark all the way to the black hole horizon, exchanging supergravity modes the lightest

of which has a mass given by mgap = 2.34πT . (There are somewhat lighter modes with
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nonzero R-charge, but these are not relevant here [35].) It is physically intuitive to interpret

Lc as the screening length Ls of the plasma since at Lc the qualitative behavior of the

potential changes. Similar criteria are used in the definition of screening length in QCD [8],

although in QCD there is no sharply defined length scale at which screening sets in. Lattice

calculations of the static potential between a heavy quark and antiquark in QCD indicate a

screening length Ls ∼ 0.5/T in hot QCD with two flavors of light quarks [6] and Ls ∼ 0.7/T

in hot QCD with no dynamical quarks [4]. The fact that there is a sharply defined Lc

in (2.2) is an artifact of the limit in which we are working.1

In [22, 23], three of us studied the velocity scaling of the screening length Ls in N = 4

super-Yang-Mills theory and found that2

Ls(v, θ, T ) =
f(v, θ)

πT

(

1 − v2
)1/4

, (2.4)

where θ is the angle between the orientation of the quark-antiquark dipole and the velocity

of the moving thermal medium in the rest frame of the dipole. f(v, θ) is only weakly

dependent on both of its arguments. That is, it is close to constant. So, to a good

approximation we can write

Ls(v, T ) ≈ Ls(0, T )(1 − v2)1/4 ∝ 1

T
(1 − v2)1/4 . (2.5)

This result, also obtained in [36] and further explored in [37 – 39], has proved robust in the

sense that it applies in various strongly coupled plasmas other than N = 4 SYM [37 – 39].

The velocity dependence of the screening length (2.5) suggests that in a theory containing

dynamical heavy quarks and meson bound states (which N = 4 SYM does not) the disso-

ciation temperature Tdiss(v), defined as the temperature above which mesons with a given

velocity do not exist, should scale with velocity as [22]

Tdiss(v) ∼ Tdiss(v = 0)(1 − v2)1/4 , (2.6)

since Tdiss(v) should be the temperature at which the screening length Ls(v) is comparable

to the size of the meson bound state. The scaling (2.6) then indicates that slower mesons

can exist up to higher temperatures than faster ones. In this paper, we shall replace

the inference that takes us from the calculated result (2.5) to the conclusion (2.6) by a

1The theoretical advantage of using 1/mgap to define a screening length as advocated in [34] is that

it can be precisely defined in N = 4 SYM theory at finite λ and Nc, as well as in QCD, as it charac-

terizes the behavior of the static potential in the L → ∞ limit. The disadvantage of this proposal from

a phenomenological point of view is that quarkonia are not sensitive to the potential at distances much

larger than their size. For questions relevant to the stability of bound states, therefore, the length scale

determined by the static potential that is phenomenologically most important is that at which the potential

flattens. Although this length is not defined sharply in QCD, it is apparent in lattice calculations and can

be defined operationally for practical purposes [4, 6]. This Ls seems most analogous to Lc in (2.2), and we

shall therefore continue to refer to Ls ≡ Lc as the screening length, as in the original literature [33]. Note

that Lc is larger than 1/mgap by a purely numerical factor ≃ 1.8.
2In [22, 23] Ls was defined using a slightly different quantity than Lc in (2.2), such that Ls = 0.28/T

for a quark-antiquark at rest. For technical reasons, this other definition was more easily generalizable to

nonzero velocity.
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calculation of the properties of mesons themselves, specifically their dispersion relations.

We shall reproduce (2.6) in this more nuanced setting, finding few percent corrections to

the basic scaling result inferred previously.

The results (2.5) and (2.6) have a simple physical interpretation which suggests that

they could be applicable to a wide class of theories regardless of specific details. First,

note that since Ls(0) ∼ 1
T , both (2.5) and (2.6) can be interpreted as if in their rest frame

the quark-antiquark dipole experiences a higher effective temperature T
√
γ. Although this

is not literally the case in a weakly coupled theory, in which the dipole will see a red-

shifted momentum distribution of quasiparticles coming at it from some directions and a

blueshifted distribution from others [21], we give an argument below for how this inter-

pretation can nevertheless be sensible. The result (2.5) can then be seen as validating the

relevance of this interpretation in a strongly coupled plasma. The argument is based on the

idea that quarkonium propagation and dissociation are mainly sensitive to the local energy

density of the medium. Now, in the rest frame of the dipole, the energy density (which

we shall denote by ρ) is blue shifted by a factor ∼ γ2 and since ρ ∝ T 4 in a conformal

theory, the result (2.5) is as if quarks feel a higher effective temperature given by T
√
γ.3

Lattice calculations indicate that the quark-gluon plasma in QCD is nearly conformal over

a range of temperatures 1.5Tc < T . 5Tc, with an energy density ρ ≈ bT 4 where b is

a constant about 80% of the free theory value [40]. So it does not seem far-fetched to

imagine that (2.5) could apply to QCD. We should also note that AdS/CFT calculations

in other strongly coupled gauge theories with a gravity description are consistent with the

interpretation above [38] and that for near conformal theories the deviation from conformal

theory behavior appears to be small [38]. If a velocity scaling like (2.5) and (2.6) holds for

QCD, it can potentially have important implications for quarkonium suppression in heavy

ion collisions, as we have discussed in section 1 and will return to in section 6.

While the argument leading from (2.5) to (2.6) is plausible, it is more satisfying to have

a set-up within which one can study mesons directly. Direct study of meson bound states

will also yield more insights than the study of the screening length from the potential. It is

the purpose of this paper to examine this issue in a specific model with dynamical flavors.

Before beginning our analysis, let us first note a curious feature regarding the quark

potential observed in [22, 23]. There one introduces a probe brane near the boundary of

the AdS5 black hole geometry with open strings ending on it corresponding to fundamental

“test quarks” of mass mq ≫
√
λT . It was found that for any given quark mass mq, there

exists a maximal velocity vc given by

v2
c = 1 − λ2T 4

16m4
q

, (2.7)

beyond which there is no O(
√
λ) potential between the pair for any value of their separation

larger than their Compton wavelength, i.e. for any distance at which a potential can be

defined. This result can be interpreted as saying that for any given T and mq, it is

3Applying a Lorentz boost to ρ yields γ2(1+ 1
3
v2)ρ. Including the (1+ 1

3
v2) factor makes this argument

reproduce the result (2.4), including the weak velocity dependence in the function f , more quantitatively

than merely tracking the powers of γ.
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impossible to obtain bound states beyond (2.7), i.e. as indicating that there is a velocity

bound (a “speed limit”) for the mesons. One can also turn (2.7) around and infer that for

any large mq and v close to 1, the dissociation temperature is given by

Tdiss =
2mq√
λ

(1 − v2)
1
4 , (2.8)

which is consistent with (2.6). Note that the above argument is at best heuristic since

N = 4 SYM itself does not contain dynamical quarks and thus genuine mesons do not

exist. In the present paper, however, we shall see by deriving them from meson dispersion

relations that (2.7) and (2.8) are precisely correct in the limit of large quark mass once

we introduce fundamentals, and hence mesons, into the theory. We shall also find that

the more dynamical, albeit heuristic, interpretation of (2.7) as a velocity beyond which a

quark and antiquark do not feel a potential that can bind them remains of value.

3. D3/D7-brane construction of mesons

In this section we review the gravity dual description of strongly coupled N = 4 SYM theory

with gauge group SU(N) coupled to Nf ≪ N N = 2 hypermultiplets in the fundamental

representation of SU(N), introduced in [41] and studied in [29, 42 – 53]. We will first de-

scribe the theory at zero temperature and then turn to nonzero temperature. We will work

in the limit N → ∞, λ = g2
YMN → ∞ and Nf finite (in fact Nf = 1). In the deconfined

strongly coupled plasma that this theory describes, heavy quark mesons exist below a disso-

ciation temperature that, for mesons at rest, is given by Tdiss = 2.166mq/
√
λ [43, 49, 50, 29].

In section 5 we shall calculate the dispersion relations for these mesons, namely the meson

spectrum at nonzero momentum k and in so doing determine Tdiss(v) directly, rather than

by inference as described in section 2.

3.1 Zero temperature

Consider a stack of N coincident D3-branes and Nf coincident D7-branes in 9+1-

dimensional Minkowski space, which we represent by the array

D3: 0 1 2 3 · · · · · ·
D7: 0 1 2 3 4 5 6 7 · · (3.1)

which denotes in which of the 9+1 dimensions the D3- and D7-branes are extended, and

in which they occupy only points. The D3-branes sit at the origin of the 89-plane, with L

denoting the distance between the D3- and the D7-branes in the 89-plane. Without loss

of generality (due to rotational symmetry in 89-plane), we can take the D7-branes to be

at x8 = L, x9 = 0. This is a stable configuration and preserves one quarter of the total

number of supersymmetries, meaning that it describes an N = 2 supersymmetric gauge

theory as we now sketch [41].

The open string sector of the system contains 3-3 strings, both of whose ends lie on one

of the N D3-branes, 7-7 strings ending on Nf D7-branes, and 3-7 and 7-3 strings stretching
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between D3- and D7-branes. In the low energy limit

α′ → 0,
L

2πα′ = finite, (3.2)

all the stringy modes decouple except for: (i) the lightest modes of the 3-3 strings, which

give rise to an SU(N) N = 4 SYM theory in 3+1-dimensional Minkowski space; (ii) the

lightest modes of the 3-7 and 7-3 strings, which give rise to Nf hypermultiplets in the

N = 2 gauge theory transforming under the fundamental representation of SU(N). The

whole theory thus has N = 2 supersymmetry. We will call Nf hypermultiplets quarks

below even though they contain both fermions and bosons. The mass of the quarks is

given by

mq =
L

2πα′ , (3.3)

where 1/(2πα′) is the tension of the strings.

In the limit

N → ∞, Nf = finite, λ = g2
YMN ≫ 1 , (3.4)

the above gauge theory has a gravity description [41] in terms of D7-branes in the near-

horizon geometry of the D3-branes, which is AdS5 × S5 with a metric

ds2 =
r2

R2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

r2
dr2 +R2dΩ2

5

=
r2

R2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

r2

9
∑

i=4

dx2
i , (3.5)

where r2 =
∑9

i=4 x
2
i and dΩ2

5 is the metric on a 5-sphere. R is the curvature radius of AdS

and is related to the Yang-Mills theory ’t Hooft coupling by

R2

α′ =
√
λ . (3.6)

The string coupling constant gs is related to the gauge theory parameters by

4πgs = g2
YM =

λ

N
, (3.7)

where g2
YM is defined according to standard field theory conventions and is twice as large

as the Yang-Mills gauge coupling defined according to standard string theory conventions.

In this zero temperature setting, the embedding of the D7-branes in the AdS5 × S5 ge-

ometry (3.5) can be read directly from (3.1). The D7-brane worldvolumes fill the (t, xi)

coordinates, with i = 1, . . . , 7, and are located at the point x8 = L, x9 = 0 in the 89-

plane. Since Nf remains finite in the large N limit, the gravitational back-reaction of the

D7-branes on the spacetime of the D3-branes (3.5) may be neglected.

The dictionary between the gauge theory and its dual gravity description can thus be

summarized as follows. On the gauge theory side we have two sectors: excitations involving

adjoint degrees of freedom only and excitations involving the fundamentals. The first type

of excitations correspond to closed strings in AdS5×S5 as in the standard AdS/CFT story.
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The second type is described by open strings ending on the D7-branes.4 In particular, the

low-lying (in a sense that we shall define later) meson spectrum of the gauge theory can

be described by fluctuations of x8,9 and gauge fields on D7-branes. We shall focus on

the fluctuations of x8,9 on the D7-brane (equivalently, the fluctuations of the position of

the D7-brane in the (x8, x9) plane) which describe scalar mesons. There are also gauge

fields localized within the D7-brane, and their fluctuations describe vector mesons. The

description of the vector mesons is expected to be similar to that of the scalar mesons. We

shall limit our presentation entirely to the scalar mesons. We shall take Nf = 1, meaning

that the gauge theory is specified by the parameters N , λ and mq which are related to

their counterparts in the dual gravity theory by (3.6), (3.7) and (3.3). We see that the

N → ∞ limit corresponds to gs → 0, making the string theory weakly coupled. Considering

the theory with the parameter λ taken to ∞ corresponds to taking the string tension to

infinity. These limits justify the use of the classical gravity approximation in which we

consider strings moving in a background spacetime.

For later generalization to finite temperature, it is convenient to describe the D7-

brane in a coordinate system which makes the symmetries of its embedding more manifest.

We split the R
6 factor in the last term of (3.5) into R

4 × R
2 (i.e. parts longitudinal and

transverse to the D7-brane) and express them in terms of polar coordinates respectively.

More explicitly,

r2 = ρ2 + y2, ρ2 = x2
4 + x2

5 + x2
6 + x2

7, y2 = x2
8 + x2

9,

x8 = y cosφ, x9 = y sinφ . (3.8)

The metric (3.5) then becomes

ds2 =
ρ2 + y2

R2

(

−dt2 + d~x2
)

+
R2

ρ2 + y2

(

dρ2 + ρ2dΩ2
3 + dy2 + y2dφ2

)

. (3.9)

The D7-brane now covers (t, ~x) = (t, x1, x2, x3, ρ,Ω3) and sits at y = L and φ = 0. Note

that in the radial direction the D7-brane extends from ρ = 0, at which the size of the

three-sphere Ω3 becomes zero, to ρ = ∞. The point ρ = 0 corresponds to r = L.

We now briefly describe how to find the low-lying meson spectrum described by the

fluctuations of x8,9. The action of the D7-brane is given by the Dirac-Born-Infeld action

SD7 = −µ7

∫

d8ξ

√

−deth̃ij , (3.10)

where the ξi (with i = 0, 1, . . . , 7) denote the worldvolume coordinates of the D7 brane and

h̃ij is the induced metric in the worldvolume

h̃ij = Gµν(X)
∂Xµ

∂ξi

∂Xν

∂ξj
. (3.11)

The value of the D7-brane tension, µ7 = (2π)−6g−1
s α′−4, will play no role in our consid-

erations. The spacetime metric Gµν is given by (3.9) and Xµ(ξ) describe the embedding

4We will not consider baryons in this paper.
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of the D7-brane, where µ runs through all spacetime coordinates. The action (3.10) is

invariant under the coordinate transformations ξ → ξ′(ξ). We can use this freedom to set

ξi = (t, ~x, ρ,Ω3), and the embedding described below equation (3.9) then corresponds to

the following solution to the equations of motion of (3.10):

y(ξ) = L, φ(ξ) = 0 or x8(ξ) = L, x9(ξ) = 0 . (3.12)

To find the meson spectrum corresponding to the fluctuations of the brane position, we let

x8 = L+ 2πα′ψ1(ξ) , x9 = 0 + 2πα′ψ2(ξ), (3.13)

and expand the action (3.10) to quadratic order in ψ1,2, obtaining

SD7 ≃ µ7

∫

d8ξ ρ3

(

−1 − 1

2
(2πα′R)2

hij

ρ2 + L2
(∂iψ1∂jψ1 + ∂iψ2∂jψ2)

)

. (3.14)

In (3.14), hij denotes the induced metric on the D7-brane for the embedding (3.12) in the

absence of any fluctuations, i.e.

ds2 = hijdξ
idξj =

ρ2 + L2

R2

(

−dt2 + d~x2
)

+
R2

ρ2 + L2

(

dρ2 + ρ2dΩ2
3

)

. (3.15)

Note that when L = 0, the above metric reduces to AdS5 × S3, reflecting the fact that in

the massless quark limit the Yang-Mills theory is conformally invariant in the large N/Nf

limit.

The equation of motion following from (3.14) is

R4

(ρ2 + L2)2
∂α∂

αψ +
1

ρ3

∂

∂ρ

(

ρ3 ∂

∂ρ
ψ

)

+
1

ρ2
∇2ψ = 0 , (3.16)

where ψ denotes either ψ1 or ψ2, where α = 0 . . . 3, and where ∇2 denotes the Laplacian

operator on the unit S3. Eq. (3.16) can be solved exactly and normalizable solutions have

a discrete spectrum. It was found in [42] that the four dimensional mass spectrum is given

by

mnl =
4πmq√

λ

√

(n+ l + 1)(n + l + 2), n = 0, 1, . . . , l = 0, 1, . . . , (3.17)

with degeneracy (ℓ+1)2, where l is the angular momentum on S3. The (ℓ+1)2 degeneracy

is understood in the field theory as arising because the scalar mesons are in the (ℓ/2, ℓ/2)

representation of a global SU(2) × SU(2) symmetry corresponding to rotations in the S3

in the dual gravity theory [42].

The mass scale appearing in (3.17) can also be deduced without calculation via a

scaling argument. Letting

t→ R2

L
t, ~x→ R2

L
~x, ρ→ Lρ, (3.18)

– 13 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
9

the metric (3.15) can be solely expressed in terms of dimensionless quantities:

ds2

R2
= (ρ2 + 1)

(

−dt2 + d~x2
)

+
1

ρ2 + 1

(

dρ2 + ρ2dΩ2
3

)

. (3.19)

Thus, the mass scale for the mesonic fluctuations must be

M ≡ L

R2
=

2πmq√
λ

, (3.20)

as is indeed apparent in the explicit result (3.17). We see that the mesons are very tightly

bound in the large λ limit with a mass M that is parametrically smaller than the rest mass

of a separated quark and antiquark, 2mq. This means that the binding energy is ≈ −2mq.

From this fact and the Coulomb potential (2.1), one can also estimate that the size of the

bound states is parametrically of order ∼ 1
M ∼

√
λ

mq
.

Finally, we can now explain the sense in which our analysis is limited to low-lying

mesons. We are only analyzing those scalar mesons whose mass is of order M . There are

other, stringy, excitations in the theory with meson quantum numbers whose masses are

of order L/(R
√
α′) ∼ Mλ1/4 ∼ mq/λ

1/4 and of order L/α′ ∼ Mλ1/2 ∼ mq [42]. They are

parametrically heavier than the mesons we analyze, and can be neglected in the large λ

limit even though those with masses ∼ mq/λ
1/4 are also tightly bound, since their masses

are also parametrically small compared to mq. In section 5, we shall see again in a different

way that our analysis of the dispersion relations for the mesons with masses ∼ mq/
√
λ that

we focus on is controlled by the smallness of 1/λ1/4.

3.2 Nonzero temperature

We now put the Yang-Mills theory at nonzero temperature, in which case the AdS5 part

of the metric (3.5) is replaced by the metric of an AdS Schwarzschild black hole

ds2 = −f(r)dt2 +
r2

R2
d~x2 +

1

f(r)
dr2 +R2dΩ2

5 , (3.21)

f(r) ≡ r2

R2

(

1 − r40
r4

)

. (3.22)

The temperature of the gauge theory is equal to the Hawking temperature of the black

hole, which is

T =
r0
πR2

. (3.23)

This is the one addition at nonzero temperature to the dictionary that relates the param-

eters of the (now hot) gauge theory to those of its dual gravity description.

At nonzero temperature, the embedding of the D7-brane is modified because the D7-

brane now feels a gravitational attraction due to the presence of the black hole. To find

the embedding, it is convenient to use coordinates which are analogous to those in (3.9).

For this purpose, we introduce a new radial coordinate u defined by

dr2

f(r)
=
R2du2

u2
, i.e. u2 =

1

2

(

r2 +
√

r4 − r40

)

, (3.24)
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in terms of which (3.21) can then be written as

ds2 = −fdt2 +
r2

R2
d~x2 +

R2

u2
(du2 + u2dΩ2

5) (3.25)

= −fdt2 +
r2

R2
d~x2 +

R2

u2

(

dρ2 + ρ2dΩ2
3 + dy2 + y2dφ2

)

. (3.26)

As in (3.9), we have split the last term of (3.25) in terms of polar coordinates on R
4 × R

2,

with

u2 = y2 + ρ2 . (3.27)

In (3.25) and (3.26), f and r should now be considered as functions of u,

r2 = u2 +
r40
4u2

, f(u) =
(u4 − r40/4)

2

u2R2(u4 + r40/4)
. (3.28)

In terms of u, the horizon is now at u0 = r0√
2
.

The D7-brane again covers ξi = (t, ~x, ρ,Ω3) and its embedding y(ξ), φ(ξ) in the (y, φ)

plane will again be determined by extremizing the Dirac-Born-Infeld action (3.10). Because

of the rotational symmetry in the φ direction, we can choose φ(ξ) = 0. Because of the

translational symmetry in the (t, ~x) directions and the rotational symmetry in S3, y can

depend on ρ only. Thus, the embedding is fully specified by a single function y(ρ). The

induced metric on the D7-brane worldvolume can be written in terms of this function as

hijdξ
idξj = −f(u)dt2 +

r2

R2
d~x2 +

R2

u2

(

(1 + y′(ρ)2)dρ2 + ρ2dΩ2
3

)

, (3.29)

where u in (3.27) and hence f(u) are functions of ρ and y(ρ). Substituting (3.29) into (3.10),

one finds

SD7 ∝
∫

dρ
ρ3

u(ρ)8

(

16

(

u(ρ)

r0

)8

− 1

)

√

1 + y′(ρ)2 , (3.30)

which leads to the equation of motion

y′′

1 + y′2
+

3y′

ρ
+

8r80
u2

(ρy′ − y)

16u8 − r80
= 0 (3.31)

for y(ρ), where u2(ρ) = ρ2 + y2(ρ).

To solve (3.31) one imposes the boundary condition that y → L as ρ → ∞, and that

the induced metric (3.29) is non-singular everywhere. L determines the bare quark mass

as in (3.3). It is convenient to introduce a parameter

ǫ∞ ≡ u2
0

L2
=

r20
2L2

=
λT 2

8m2
q

=
π2T 2

2M2
, (3.32)

where we have used (3.23) and (3.20). Because N = 4 SYM is scale invariant before

introducing the massive fundamentals, meaning that all dimensionful quantities must be

proportional to appropriate powers of T , when we introduce the fundamentals the only

way in which the quark mass mq can enter is through the dimensionless ratio mq/T . Scale
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Figure 1: Some possible D7-brane embeddings y(ρ). The quark mass to temperature ratio is

determined by y(∞) = L. Specifically,
√

8mq/(T
√
λ) = y(∞)/u0 ≡ 1/

√
ǫ∞. The top three curves

are Minkowski embeddings, with y(ρ) extending from ρ = 0 to ρ = ∞. The bottom three curves

are black hole embeddings, in which the D7-brane begins at the black hole horizon at y2 + ρ2 = u0.

The middle curve is the critical embedding. The seven curves, ordered from top to bottom as they

occur in the left part of the figure, are drawn for temperatures specified by ǫ∞ = 0.249, 0.471,

0.5865, 0.5948, 0.5863, 0.647 and 1.656. Note that the ǫ∞ = 0.5863 black hole embedding crosses

both the ǫ∞ = 0.5948 critical embedding and the ǫ∞ = 0.5865 Minkowski embedding.

invariance alone does not require that this ratio be accompanied by a
√
λ, but it is easy

to see that, after rescaling to dimensionless variables as in (3.18), the only combination of

parameters that enters (3.31) is ǫ∞. The small ǫ∞ regime can equally well be thought of

as a low temperature regime or a heavy quark regime. In the remainder of this section, we

shall imagine mq as fixed and describe the physics as a function of varying T , i.e. varying

horizon radius r0.

The equation of motion (3.31) that specifies the D7-brane embedding can be solved

numerically. Upon so doing, one finds that there are three types of solutions with different

topology [43, 49, 29]:

• Minkowski embeddings: The D7-brane extends all the way to ρ = 0 with y(0) >

u0 = r0√
2

(see e.g. the upper three curves in figure 1). In order for the solution to be

regular one needs y′(0) = 0. This gives rise to a one-parameter family of solutions

parameterized by y(0). The topology of the brane is R
1,7.

• Critical embedding: The D7-brane just touches the horizon, i.e. y(0) = u0 (see e.g.

the middle curve in figure 1). The worldvolume metric is singular at the point where

the D7-brane touches the horizon.

• Black hole embeddings: The D7-brane ends on the horizon u0 = r0/
√

2 at some ρ > 0
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(see e.g. the lower three curves in figure 1). The topology of the D7-brane is then

R
1,4 × S3.

It turns out [50, 29] that Minkowski embeddings that begin at ρ = 0 with y close

to r0/
√

2, just above the critical embedding, can cross the critical embedding, ending up

at ρ → ∞ with y(∞) just below that for the critical embedding. Similarly, embeddings

that begin just below the critical embedding can end up just above it. Furthermore, those

embeddings that begin even closer to the critical embedding can cross it more than once.

This means that there is a range of values around the critical ǫc∞ = 0.5948 for which

there are three or more embeddings for each value of ǫ∞. At low temperatures (precisely,

for ǫ∞ < 0.5834) this does not occur: there is only a single Minkowski embedding for

each value of ǫ∞. At high temperatures (precisely, for ǫ∞ > 0.5955) there is only a

single black hole embedding per value of ǫ∞. In the intermediate range of temperatures

0.5834 < ǫ∞ < 0.5955, one needs to compare the free energy of each of the three or

more different D7-brane embeddings that have the same value of ǫ∞ to determine which

is favored. One finds that there is a first order phase transition at a temperature Tc at

which ǫ∞ = 0.5863, where the favored embedding jumps discontinuously from a Minkowski

embedding to a black hole embedding as a function of increasing temperature [50, 29].5

As we shall study in detail in section 4, fluctuations about a Minkowski embedding

describe a discrete meson spectrum with a mass gap of order O(M). In contrast, fluc-

tuations about a black hole embedding yield a continuous spectrum [50, 29]. A natural

interpretation of the first order transition is that Tc = Tdiss, the temperature above which

the mesons dissociate [50, 29]. It is interesting, and quite unlike what is expected in QCD,

that all the mesons described by the zero temperature spectrum (3.17) dissociate at the

same temperature. This is presumably related to the fact that the mesons are so tightly

bound, again unlike in QCD. We shall therefore focus on the velocity-dependence of the

meson spectrum at nonzero temperature — in other words, the meson dispersion relations

first studied in [29]. As we have explained in section 1, the velocity-dependence is currently

inaccessible to lattice QCD calculations. Hence, even qualitative results are sorely needed.

Furthermore, inferences drawn from a previous calculation of the potential between a mov-

ing quark-antiquark pair lead to a velocity-scaling (2.6) of Tdiss that has a simple physical

interpretation, which suggests that it could be applicable in varied theories [22]. We shall

see this velocity dependence emerge from the meson dispersion relations in section 5.

It is interesting to return to the qualitative estimate of Tdiss obtained from the static

quark-antiquark potential in section 2, and see how it compares to the Tdiss = Tc obtained

from the analysis of the mesons themselves. Equating the size of a meson with binding

energy 2mq, determined by the zero-temperature potential (2.1), with the screening length

Ls = Lc = 0.24/T , determined by the potential (2.2) at nonzero temperature, yields the

estimate that Tdiss should be ∼ 2.1mq/
√
λ. This is in surprisingly good agreement with

Tdiss =
√

8ǫ∞mq/
√
λ = 2.166mq/

√
λ for ǫ∞ = 0.5863.

5The critical embedding occurs at an ǫ∞ = 0.5948 which is greater than the ǫ∞ at which the first order

phase transition occurs, meaning that at ǫ∞ = 0.5948 there is a black hole embedding that has a lower free

energy than the critical embedding.
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Figure 2: ǫ∞ (determined by the embedding y at infinity) versus ε (determined either by y(0), for

Minkowski embeddings with ε < 1, or by where the embedding intersects the horizon, for ε > 1).

The right panel zooms in on the vicinity of the critical embedding at ε = 1. The stable embeddings

and the first order phase transition are indicated by the thick curve; the metastable embeddings

are indicated by the thin curves.

In subsequent sections, we shall derive the dispersion relations for mesons at T < Tdiss.

We close this section by introducing some new notation that simplifies the analysis of the

Minkowski embedding of the D7-brane, whose fluctuations we shall be treating. We first

introduce parameters

L0 ≡ y(0) , ε ≡ u2
0

L2
0

=
r20

2L2
0

. (3.33)

For Minkowski embeddings, ε takes value in the range [0, 1], with ε = 0 corresponding to

zero temperature, and ε = 1 to the critical embedding. Although ǫ∞ that we introduced

earlier has the advantage of being directly related to the fundamental parameters of the

theory according to (3.32), the new parameter has the advantage that there is only one

embedding for each value of ε. And, ε will turn out to be convenient for analyzing the

equations of motion (3.31) and the fluctuations on D7-branes. When ǫ∞ ≪ 1, ε ≈ ǫ∞. A

full analytic relation between ε and ǫ∞ is not known, but given an ε one can readily find

the corresponding ǫ∞ numerically. For example, at T = Tc, ε = 0.756 and ǫ∞ = 0.586

while for the critical embedding, ε = 1 and ǫ∞ = ǫc∞ = 0.5948. We depict the relation

between ǫ∞ and ε in figure 2. In order to make this figure, for the black hole embeddings

we have defined ε = 1/ sin2 θ where θ is the angle in the (y, ρ) plane of figure 1 at the point

at which the black hole embedding y(ρ) intersects the black hole horizon y2 + ρ2 = u2
0.

That is, 1 < ε < ∞ parametrizes black hole embeddings which begin at different points

along the black hole horizon. The seven embeddings in figure 1 have ε = 0.25, 0.5, 0.756,

1.00, 1.13, 1.41 and 4.35, from top to bottom as they are ordered on the left, i.e. at the tip

of the D7-brane at y = 0 for the Minkowski embeddings and at the horizon for the black

hole embeddings.

Finally, it will also prove convenient to introduce dimensionless coordinates by a rescal-

ing according to

t −→ R2

L0
t, xi −→

R2

L0
xi, ρ −→ L0ρ, y −→ L0y, (3.34)
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after which the spacetime metric becomes

ds2

R2
= Gµνdx

µdxν = −f(u)dt2 + r(u)2d~x2 +
1

u2

(

dρ2 + ρ2dΩ2
3 + dy2 + y2dφ2

)

(3.35)

and the induced metric becomes

ds2D7

R2
= hijdξ

idξj = −f(u)dt2 + r2d~x2 +
1

u2

(

(1 + y′(ρ)2)dρ2 + ρ2dΩ2
3

)

(3.36)

with

u2 = y2 + ρ2, f(u) =
(u4 − ε2)2

u2(u4 + ε2)
, r2(u) = u2 +

ε2

u2
, (3.37)

where both Gµν and hij are now dimensionless. The equation of motion for y(ρ) becomes

y′′

1 + y′2
+ 3

y′

ρ
+

8

u2

(

ρy′ − y

ε−4u8 − 1

)

= 0, (3.38)

with the boundary conditions

y(0) = 1, y′(0) = 0 . (3.39)

This form of the equations of motion that determine the embedding y(ρ) will be useful in

subsequent sections.

4. Meson fluctuations at nonzero temperature

In this section we derive linearized equations of motion that describe the small fluctuations

of the D7-brane position. A version of these equations have been derived and solved

numerically by various authors (see e.g. [43, 44, 50, 29]). Here we will rederive the equations

in a different form by choosing the worldvolume fields parameterizing the fluctuations in

a more geometric way. The new approach gives a nice geometric interpretation for the

embedding and small fluctuations. It also simplifies the equations dramatically, which

will enable us to extract analytic information for the meson dispersion relations in the

next section. We present the main ideas and results in this section but we leave technical

details to appendix A. In that appendix, we shall also present a general discussion of the

fluctuations of a brane embedded in any curved spacetime.

The action for small perturbations of the D7-brane location can be obtained by insert-

ing

Xµ(ξ) = Xµ
0 (ξi) + δXµ(ξi) (4.1)

into the D-brane action (3.10) and (3.11), where Xµ
0 (ξ) denotes the background solution

that describes the embedding in the absence of fluctuations, and δXµ describes small fluc-

tuations transverse to the brane. For the D7-brane under consideration, in the coordinates

used in (3.35) the general expression (4.1) becomes

y(ξ) = y0(ρ) + δy(ξ), φ(ξ) = δφ(ξ) (4.2)
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with y0(ρ) the embedding solution obtained by solving (3.38). The choice of the worldvol-

ume fields δy, δφ is clearly far from unique. Any two independent functions of δy and δφ

will also do. (This freedom corresponds to the freedom to choose different coordinates for

the 10-dimensional space within which the D7-brane is embedded.) In fact, it is awkward

to use δy and δφ as worldvolume fields since they are differences in coordinates and thus

do not transform nicely under coordinate changes. Using them obscures the geometric

interpretation of the equations. Below we will adopt a coordinate system which makes the

geometric interpretation manifest. Since our discussion is rather general, not specific to the

particular system under consideration, we will describe it initially using general language.

Consider a point X0(ξ) on the brane. The tangent space at X0 perpendicular to

the D7-brane is a two-dimensional subspace V0 spanned by unit vectors nµ
1 , n

µ
2 which are

orthogonal to the branes, i.e.

nµ
1 ∝

(

∂

∂y

)µ

− y′0(ρ)

(

∂

∂ρ

)µ

(4.3)

nµ
2 ∝

(

∂

∂φ

)µ

. (4.4)

Any vector ηµ in V0 can be written as

ηµ = χ1n
µ
1 + χ2n

µ
2 . (4.5)

We can then establish a map from (χ1, χ2) to small perturbations δXµ in (4.1) by shooting

out geodesics of unit affine parameter from X0 with tangent ηµ. Such a map should be one-

to-one for χ1, χ2 sufficiently small. Clearly χ1 and χ2 behave like scalars under coordinate

changes and we will use them as the worldvolume fields parameterizing small fluctuations

of the position of the brane. By solving the geodesic equation, δXµ can be expressed in

terms of χ1,2 as

δXµ = ηµ − 1

2
Γµ

αβη
αηβ + . . . , (4.6)

where Γµ
αβ are the Christoffel symbols of the 10-dimensional metric. Note that the choice of

χ1,2 is not unique. There is in fact an SO(2) “gauge” symmetry under which χ1,2 transform

as a vector, since one can make different choices of basis vectors n1, n2 that are related by

a local SO(2) transformation.

We now insert (4.6) and (4.1) into the Dirac-Born-Infeld action (3.10) and, after some

algebra discussed further in appendix A, we find that the equations of motion satisfied by

X0 (i.e. which determine the embedding in the absence of fluctuations) can be written as

Ks = 0, (4.7)

and the quadratic action for small fluctuations χ1,2 about X0 takes the form

SD7 = µ7R
8

∫

d8ξ
√

−dethij

(

−1

2
DiχsD

iχs −
1

2
χsχt

(

−KsijK
ij
t +Rsijth

ij
)

)

, (4.8)
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where s, t = 1, 2 and where we have defined the following quantities:

hij = Gµν∂iX
µ
0 ∂jX

ν
0 , Rsijt = nα

s n
β
t ∂iX

µ
0 ∂jX

ν
0Rαµνβ , (4.9)

Ksij = ∂iX
µ
0 ∂jX

ν
0∇µnsν , Ks = Ksijh

ij , (4.10)

Diχs = ∂iχs + Uistχt , Uist = nsν∂iX
µ
0 ∇µn

ν
t . (4.11)

Note that hij is the induced metric on the brane and i, j are raised by hij . Rαµνβ is the

Riemann tensor for the 10-dimensional spacetime. Ksij is the extrinsic curvature of the

brane along the direction nµ
s . Uist (which is antisymmetric in s, t) is an SO(2) connection

for the SO(2) gauge symmetry and Di is the corresponding covariant derivative. We see

that the embedding equations of motion (4.7) have a very simple geometric interpretation

as requiring that the trace of the extrinsic curvature in each orthogonal direction has to

vanish, which is what we expect since this is equivalent to the statement that the volume

of the D7-brane is extremal.

The symmetries of the D7-brane embedding that we are analyzing allow us to further

simplify the action (4.8). Because nµ
2 in (4.4) is proportional to a Killing vector and is

hypersurface orthogonal, Ui12 and K2ij vanish identically. (See appendix A for a proof,

and for the definition of hypersurface orthogonal.) With K2 = 0 satisfied as an identity, the

remaining equation of motion specifying the embedding, namely K1 = 0, is then equivalent

to the equation of motion for y that we derived in section 3, namely eq. (3.38). After some

further algebra (see appendix A) we find that the action (4.8) for small fluctuations reduces

to

SD7 = µ7R
8

∫

d8ξ
√

−dethij

(

−1

2
(∂χ1)

2 − 1

2
(∂χ2)

2 − 1

2
m2

1χ
2
1 −

1

2
m2

2χ
2
2

)

(4.12)

with

m2
1 = R11 +R2112 + 2R22 + (8)R −R ,

m2
2 = −R22 −R2112 , (4.13)

where we have defined

R2112 = nµ
2n

ν
1n

σ
1n

τ
2Rµνστ ,

R11 = nν
1n

σ
1Rνσ ,

R22 = nν
2n

σ
2Rνσ , (4.14)

and where R is the Ricci scalar for the 10-dimensional spacetime while (8)R is the Ricci

scalar for the induced metric hij on the D7 brane. The background metric hij is given

by (3.35). The “masses” m2
1 and m2

2 are nontrivial functions of ρ. Since the worldvolume

metric is regular for Minkowski embeddings, they are well defined for ρ ∈ [0,∞).

Our result in the form (4.8) is very general, applicable to the embedding of any

codimension-two branes in any spacetime geometry. For example, we can apply it to

the embedding of D7-branes at zero temperature given by (3.12) and learn that the meson

fluctuations at zero temperature are described by (4.12) with

m2
1 = m2

2 = −3ρ2 + 4

1 + ρ2
(4.15)
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Figure 3: The squared “masses” of the two orthonormal geometric modes of the D7-brane fluc-

tuations for Minkowski embeddings (left panel) and black hole embeddings (right panel). In each

figure, m2
1 (m2

2) is plotted as a solid (dashed) line for three values of ǫ∞. The Minkowski embeddings

have ǫ∞ = 0.587, 0.471 and 0.249 (top to bottom) and the black hole embeddings have ǫ∞ = 1.656,

0.647 and 0.586 (again top to bottom, this time with temperature increasing from top to bottom.)

The Minkowski embedding is plotted as a function of ρ and the black hole embedding as a function

of u with the horizon on the left at u = 1.

and with hij in (4.12) given by (3.15). It is also straightforward to check that equations of

motion derived from (4.12) with (4.15) and hij given by (3.15) are equivalent to (3.16). At

zero temperature, (3.14) and (3.15) are already simple enough and the formalism we have

described here does not gain us further advantage. However, at nonzero temperature the

equations of motion obtained from (4.12) yield both technical and conceptual simplification.

In section 5 we shall use the formalism that we have developed to obtain the dispersion

relations at large momentum analytically.

Before turning to the dispersion relations, we plot the “masses” m2
1 and m2

2 for various

D7-brane embeddings at nonzero temperature in figure 3. Using a numerical solution for

y(ρ), it is straightforward to evaluate (4.13), obtaining the masses in the figure. For the
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black hole embeddings, the D7-brane begins at the black hole horizon at u = 1 rather than

at ρ = 0, see figure 1, making it more convenient to plot the masses as a function of u

rather than ρ. We can infer several important features from the masses plotted in figure 3.

As ρ→ ∞, both m2
1 and m2

2 approach −3 for all the embeddings. This implies that χ1 and

χ2 couple to boundary operators of dimension 3, as shown in [51] by explicit construction

of the operators in the boundary theory which map onto χ1 and χ2. As ε→ 1 from below

for the Minkowski embeddings (from above for the black hole embeddings), the behavior

of m2
1 at the tip of the D7-brane at ρ = 0 (at u = 1) becomes singular, diverging to minus

infinity. This is a reflection of the curvature divergence at the tip of the critical embedding

at ρ = 0 (u = 1).

We have referred to m2
1 and m2

2 as “masses” in quotes because the equations of motion

obtained by straightforward variation of the action (4.12) in which they arise yields

1√
−h

∂i(
√
−hhij∂jχs) −m2

sχs = 0, s = 1, 2 (4.16)

with h ≡ dethij , which is a Klein-Gordon equation in a curved spacetime with spatially

varying “masses”. If we could cast the equations of motion in such a way that they take the

form of a Schrödinger equation with some potential, this would make it possible to infer

qualitative implications for the nature of the meson spectrum immediately via physical

intuition, which is not possible to do by inspection of the curves in figure 3. To achieve

this, we recast the equations of motion as follows. We introduce a “tortoise coordinate” z

defined by

dz2 =
1

u2f(u)

(

1 + y′0(ρ)
2
)

dρ2 , (4.17)

in terms of which the induced metric on the brane takes the simple form

ds2D7

R2
= f(−dt2 + dz2) + r2(u)d~x2 +

ρ2

u2
dΩ2

3 . (4.18)

(We choose the additive constant in the definition of z so that z = 0 at ρ = 0.) Then, we

seek solutions to the equations of motion (4.16) that separate according to the ansatz

χs =
ψs(z)

Z
e−iωt+i~k·~x Yℓmm̃(Ω3) (4.19)

with

Z ≡
(
√
−h
f

)

1
2

=
(rρ

u

)
3
2
. (4.20)

Such a solution is the wave function for a scalar meson of type s = 1 or s = 2 with energy

ω and wave vector ~k (note the plane wave form for the dependence on (3+1)-dimensional

Minkowski space coordinates) and with quantum numbers ℓ, m and m̃ specifying the an-

gular momentum spherical harmonic on the “internal” three-sphere. (Rotation symmetry

of the three-sphere guarantees that the quantum numbers m and m̃ will not appear in any

equations.) The ψs(z) that we must solve for are the wave functions of the meson states

in the fifth dimension.
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Figure 4: Potentials Vs(z) for Minkowski embeddings at various temperatures, all with k = ℓ = 0.

The left (right) panel is for s = 1 (s = 2). In each panel, the potentials are drawn for ǫ∞ = 0.249,

0.471, 0.586 and 0.5948, with the potential widening as the critical embedding is approached, i.e.

as ǫ∞ is increased. The ǫ∞ = 0.586 potential is that for the Minkowski embedding at the first

order transition; the widest potential shown describes the fluctuations of a metastable Minkowski

embedding very close to the critical embedding. The potential becomes infinitely wide as the critical

embedding is approached, but it does so only logarithmically in ǫc
∞

− ǫ∞. Note that the tip of the

D7-brane is at z = 0, on the left side of the figure, whereas ρ = ∞ has been mapped to a finite

value of the tortoise coordinate z = zmax, corresponding to the “wall” on the right side of each of

the potentials in the figure.

The reasons for the introduction of the tortoise coordinate z and the ansatz (4.19)

for the form of the solution become apparent when we discover that the equations of

motion (4.16) now take the Schrödinger form

− ∂2

∂z2
ψs + Vs(k, z)ψs = ω2ψs , (4.21)

with potentials for each value of k = |~k| and for each of the two scalar mesons labelled by

s = 1, 2 given by

Vs(k, z) =
Z ′′

Z
+ fm2

s +
fk2

r2
+
l(l + 2)fu2

ρ2
. (4.22)

Here, the prime denotes differentiation with respect to z. Recall that u2 = ρ2 + y2
0(ρ) and

it should be understood that ρ, u, and y0 are all functions of the tortoise coordinate z. In

figures 4 and 5, we provide plots of Vs(z) with k = ℓ = 0 for s = 1, 2 and for Minkowski

(figure 4)) and black hole (figure 5) embeddings at various temperatures. With the tortoise

coordinate z defined as we have described, in a Minkowski embedding z extends from z = 0,

which corresponds to the tip of the D7-brane, to

z = zmax ≡
∫ ∞

0

dρ

u

√

1 + y′0(ρ)
2

f(u)
, (4.23)

which corresponds to ρ = ∞. Here, u(ρ) and f(u) are given in (3.37). This defines the

width of the potentials for the Minkowski embeddings shown in figure 4, which get wider

and wider as the critical embedding is approached.
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Figure 5: Potentials Vs(zbh) for black hole embeddings at various temperatures, all with k = ℓ = 0.

The left (right) panel is for s = 1 (s = 2). In each panel, the potentials are drawn for ǫ∞ = 3584.,

0.647, 0.586, 0.586, 0.5940 and 0.5948, from narrower to wider, with the potential widening as the

critical embedding is approached from the right along the curve in figure 2. Note that zbh is defined

such that the horizon is at zbh = ∞, and ρ = ∞ is at zbh = 0. The narrower (wider) of the two

potentials with ǫ∞ = 0.586 is that for the stable (unstable) black hole embedding: at this ǫ∞, there

is a first order transition (see figure 2) between the stable Minkowski embedding (whose potential

is found in figure 4) and the stable black hole embedding. The potentials at ǫ∞ = 0.5940 and

0.5948 describe fluctuations of metastable black hole embeddings, with the latter being a black hole

embedding very close to the critical embedding.

If we used the same tortoise coordinate for the black hole embeddings, the lower limit

of the integral (4.23) is then the ρ at which y(ρ) intersects the horizon and f(u) vanishes,

making the integral divergent. This means that ρ = ∞ is mapped onto z = ∞ for black hole

embeddings. It is more convenient to define zbh by first choosing the integration constant

such that ρ = ∞ corresponds to zbh = 0, and then multiplying by -1. This is the tortoise

coordinate that we have used in figure 5

The qualitative implications for the meson spectrum can be inferred immediately from

figures 4 and 5, since we have intuition for solutions of the Schrödinger equation. We

can see immediately that the Minkowski embeddings all have a discrete spectrum of meson

excitations, while the fluctuations of the black hole embeddings all have continuous spectra.

This justifies the identification of the first order phase transition from Minkowski to black

hole embeddings that we described in section 3 as the transition at which mesons dissociate.

In addition to the continuum of fluctuations of the black hole embeddings, which we

recall are those embeddings where the D7-brane touches the black hole horizon, there are

discrete energies at which the fluctuations at the horizon are purely infalling, with no out-

going component. In figure 5, these modes are purely right-moving at zbh → ∞. Such

modes, the real parts of whose energies lie within the continuum, are called quasinormal

modes; their energies also have large imaginary parts due to their coupling to the contin-

uum [50, 51].

Other phenomena that are discussed quantitatively in [29, 50, 51] can be inferred

qualitatively directly from the potentials in figures 4 and 5. For example we see from
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the left panel in figure 5 that, in addition to the continuous spectrum characteristic of

all black hole embeddings, those embeddings that are close to the critical embedding will

have discrete bound states for the ψ1 fluctuations. These bound states will always have

negative mass-squared, representing an instability. This instability arises only in a regime of

temperatures at which the black hole embeddings already have a higher free energy than the

stable Minkowski embedding, that is, at temperatures below the first order transition [29].

They therefore represent an instability of the branch of the spectrum that was already

metastable. Similarly, the left panel of figure 4 shows that Minkowski embeddings close to

the critical embedding also have negative mass-squared bound states; again, this instability

only occurs for embeddings that were already only metastable [29]. We see from the

right panel of figure 5 that resonances may also occur in the ψ2 channel for the black

hole embedding. They are interpreted as quasi-normal modes; close to the transition

these resonances become more well defined and may be interpreted as quasi-particle meson

excitations [50, 51].

5. Dispersion relations

We have now laid the groundwork needed to evaluate the dispersion relations for the ψ1

and ψ2 scalar mesons, corresponding in the gravity dual to fluctuations of the position of

the D7 brane. These fluctuations are governed by (4.21), which are Schrödinger equations

with the potentials V1(k, z) or V2(k, z) given by (4.22) and (4.13) and depicted in figure 4.

The eigenvalues of these Schrödinger equations are ω2 for the mesons. So, it is now a

straightforward numerical task to find the square root of the eigenvalues of the Schrödinger

equation with, say, potential V1(k, z), at a sequence of values of k. At k = 0, this will

reproduce the results that we reviewed in section 3.2. As we increase k, we map out the

dispersion relation ω of each of the ψ1 mesons. In figure 8 in section 5.3 below, we show

the dispersion relations for the ground state ψ1 meson at several values of the temperature.

Such dispersion relations have also been obtained numerically in [29]. In order to more

fully understand the dispersion equations, and their implications, we shall focus first on

analytic results. The potentials are complicated enough that we do not have analytic

solutions for the general case. We shall show, however, that in the low temperature and/or

the large-k limit, the equations simplify sufficiently that we can find the dispersion relations

analytically. It is the large-k limit that is of interest to us, but it is very helpful to begin

first at low temperatures, before then analyzing the dispersion relations in the large-k limit

at any temperature below the dissociation temperature.

Readers who are only interested in the final results can proceed directly to section 5.4,

where we summarize and discuss our central results for the dispersion relations.

5.1 Low temperature

At low temperature, ε ≪ 1, the D7-branes are far from the horizon of the black hole. In

this regime, we can expand various quantities that occur in the potentials (4.22) as power

series in ε2. We shall then be able to determine the dispersion relations analytically to
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order ε2 in two limits: (i) ε → 0 at fixed k, meaning in particular that εk → 0; and (ii)

ε→ 0 at fixed, large, εk, meaning that k → ∞ as ε→ 0.

We begin by seeing how the equation (3.38) that determines the embedding y(ρ) in

the absence of fluctuations simplifies at small ε. Expanding y(ρ) as a power series in ε, one

immediately finds that y(ρ) is modified only at order ε4, i.e.

y(ρ) = 1 + O(ε4) , (5.1)

which in turn implies that

ǫ∞ = ε
(

1 + O(ε4)
)

. (5.2)

Thus, if we work only to order ε2, we can treat the embedding as being y(ρ) = 1, as at

zero temperature, and can neglect the difference between ε and ǫ∞ (which is to say the

difference between y(0) and y(∞)). From (3.37), then,

u2 = 1 + ρ2 + O(ε4), f(u) ≈ u2

(

1 − 3ε2

u4
+ O(ε4)

)

. (5.3)

By expanding the curvature invariants in (4.13) to order ε2, we find that

m2
1 = m2

2 = −4 + 3ρ2

1 + ρ2
+ O(ε4) , (5.4)

meaning that to order ε2 the mass terms occurring in (3.38) are as in (4.15) at zero

temperature. Next, we expand the tortoise coordinate (4.17), finding

z = tan−1 ρ+ ε2g(ρ) + O(ε4), with g(ρ) =
3

16

(

3 tan−1 ρ+
ρ(5 + 3ρ2)

(1 + ρ2)2

)

. (5.5)

We can then invert (5.5) to obtain ρ in terms of z:

ρ = tan z − ε2
g(tan z)

cos2 z
+ . . . . (5.6)

Using these equations, we find that the potential (4.22) is given to order O(ε2) by

V (z) = k2 + V 0(z) − 4ε2k2 cos4 z + ε2h(z) + O(ε4, ε4k2), (5.7)

where

V 0(z) ≡ 4αℓ

sin2 2z
− 1, with αℓ ≡

3

4
+ ℓ(ℓ+ 2) (5.8)

is the potential at zero temperature, and

h(z) =
3αℓ

(

sin2(2z) + 6z cot(2z) − 3
)

2 sin2(2z)
+

9

4
sin2(2z) . (5.9)

We shall not use the explicit form of h(z) in the following.
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5.1.1 Low temperature at fixed k

At zero temperature (ε = 0), solving the Schrödinger equation (4.21) with potential V 0(z)

yields the eigenvalues (and hence the dispersion relations)

ω2 − k2 = m2
nℓ, n = 1, 2, . . . , l = 0, 1, . . . , (5.10)

with mnℓ given by (3.17) (after restoring its dimensions). If we work in the limit ε→ 0 with

k fixed, then both the O(ε2) and the O(ε2k2) terms that describe the effects of nonzero

but small temperature in the potential (5.8) can be treated using quantum mechanical

perturbation theory. To first order in ε2, the dispersion relation becomes

ω2 = v2
nℓk

2 +m2
nℓ + ε2bnℓ + O(ε4) (5.11)

with

v2
nℓ = 1 − anℓ ε

2 ,

anℓ = 4〈n, ℓ| cos4 z|n, ℓ〉 ,
bnℓ = 〈n, ℓ|h(z)|n, ℓ〉 , (5.12)

where |n, ℓ〉 are the eigenfunctions of the Hamiltonian with the unperturbed potential V 0

of (5.8), with wave functions

ψ0
nℓ(z) = Γ

(

ℓ+
3

2

)

21+ℓ

√

n
(

n+ ℓ+ 3
2

)

πΓ (n+ 2ℓ+ 3)
(sin z)

3
2
+ℓC

(ℓ+ 3
2
)

n (cos z) . (5.13)

Using the recursion relations for the generalized Gegenbauer polynomials C
(α)
n [54], anℓ can

be evaluated analytically, yielding

anℓ = 2 − (n+ 2l + 1)(n + 2l + 2)

4(n+ l + 1/2)(n + l + 3/2)
− (n+ 1)(n + 2)

4(n+ l + 3/2)(n + l + 5/2)
. (5.14)

So, for the ground state with n = ℓ = 0, a00 = 18/15. bnℓ can be computed numerically,

but we will not do so here. The dispersion relation (5.11) is valid for ε2 ≪ 1 and ε2k2 ≪ 1,

meaning that at small ε it is valid for k ≪ 1/ε. No matter how small ε is, the perturbation

theory breaks down for k ∼ 1
ε and (5.11) does not apply. In other words, the low temper-

ature ε → 0 limit and the high meson momentum k → ∞ limits do not commute. Even

though (5.11) cannot be used to determine the meson velocity at large k, it is suggestive.

We shall see below that in the large-k limit, the meson velocity is indeed 1 − O(ε2), but

the coefficient of ε2 is not given by (5.14).

5.1.2 Low temperature at fixed, large, εk

To explore the behavior of the dispersion relations in the large-k limit, we now consider

the following scaling limit

ε→ 0, k → ∞, with Λ2 = k2ε2 = finite. (5.15)
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Figure 6: The potential (5.16) with ε = 0.756 and k = 5, 20 and 100. We see that as Λ = ε2k2

increases, the minimum of the potential moves towards z = 0, the potential deepens, and the

curvature around the minimum increases.

In this limit, the potential (4.22) again greatly simplifies and, consistent with (5.7), becomes

V (z) = k2 +
4αℓ

sin2 2z
− 1 − 4Λ2 cos4 z . (5.16)

This potential is valid in the limit (5.15) for any value of Λ, small or large. If Λ is small, the

dispersion relation can be determined using perturbation theory as before, yielding (5.11)

without the ε2bnℓ term. In order to analyze the large-k regime, we now consider Λ ≫ 1,

and seek to evaluate the dispersion relation as an expansion in 1/Λ. For this purpose, we

notice that as Λ → ∞ the potential (5.16) develops a minimum at

z0 =
( αℓ

8Λ2

)
1
4 → 0 for Λ → ∞ , (5.17)

as depicted in figure 6. The curvature about the minimum is V ′′(z0) ∝ Λ2. Thus, if we

imagine watching how the wave function changes as we take the large-Λ limit, we will see

the wave function getting more and more tightly localized around the point z = z0 which

gets closer and closer to z = 0. That is, the wave function will be localized around the tip

of the brane z = 0. This motivates us to expand the potential around z = 0, getting

V (z) − k2 + 1 = αl

(

1

z2
+

4

3
+

16z2

15
+ . . .

)

− 4Λ2

(

1 − 2z2 +
5z4

3
+ . . .

)

. (5.18)

If we now introduce a new variable ξ = Λ
1
2 z, the Schrödinger equation (4.21) becomes

(

−∂2
ξ +

αℓ

ξ2
+

1

4
Ω2ξ2

)

ψ + Ṽ ψ = Eψ (5.19)
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where

Ω2 = 32, E =
1

Λ
(ω2 − k2 + 4Λ2) , (5.20)

and Ṽ contains only terms that are higher order in 1/Λ:

Ṽ =
1

Λ

(

4αℓ

3
− 1 − 20

3
ξ4
)

+ O(1/Λ2) . (5.21)

Thus to leading order in the large Λ limit, we can drop the Ṽ term in (5.19). Upon so

doing, and using the expression (5.8) for αℓ, the equation (5.19) becomes that of a harmonic

oscillator in 4 dimensions with mass 1
2 and frequency Ω. This quantum mechanics problem

can be solved exactly, with wave functions given by

ψnl = ξ3/2+ℓL(ℓ+1)
ν

(

Ω

2
ξ2
)

e−
Ω
4

ξ2

, (5.22)

up to a normalization constant, and with eigenvalues given by

En = Ω(n+ 2), n = 0, 1, . . . (5.23)

In (5.22), L
(α)
ν is the generalized Laguerre polynomial of order

ν =
n− ℓ

2
. (5.24)

The allowed values of ℓ are determined by the requirement that ν must be a non-negative

integer. The degeneracy of n-th energy level is (n+3)!
3!n! . Higher order corrections in 1/Λ can

then be obtained using perturbation theory. For example, with the next order correction

included, the degeneracy among states with different ℓ and the same n is lifted and the

eigenvalues are given by

Enℓ = Ω(n+ 2) +
cnℓ

Λ
+ O(1/Λ2) (5.25)

with

cnℓ = −5

4
(n+ 2)2 +

7

4
ℓ(ℓ+ 2) . (5.26)

Thus, in the small-ε limit with Λ fixed and large, we find using (5.20) that the dispersion

relation becomes

ω2
nℓ = (1 − 4ε2)k2 + 4

√
2(n+ 2)kε+ cnℓ +O(1/k) . (5.27)

Notice that cnℓ is negative for the ground state, and indeed for any n at sufficiently small ℓ.

We learn from this calculation that in the large-k limit, at low temperatures mesons move

with a velocity given to order ε2 by v =
√

1 − 4ε2 = 1 − 2ε2. Recalling that to the order

we are working ǫ∞ = ε, this result can be expressed in terms of T , mq and λ using (3.32).

In the next subsection, we shall obtain the meson velocity at large k for any ε .
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5.2 Large-k dispersion relation at generic temperature

The technique of the previous subsection can be generalized to analyze the dispersion

relation in the large-k limit at a generic temperature below the dissociation temperature.

For general ε < 1, one again observes that the potential has a sharper and sharper minimum

near the tip of the brane z = 0 as k becomes larger and larger. Thus, in the large k limit,

we only need to solve the Schrödinger equation near z = 0.

To find the potential V (z) as a power series in z near z = 0, we need to know the

solution y(ρ) of (3.38) near the tip of the brane at ρ = 0:

y = 1 +
ρ2

ε−4 − 1
+
ε4(5 + 5ε4 − 3ε8)

3(ε4 − 1)3
ρ4 + O(ρ4) . (5.28)

At small ρ, using the expansion of y in (5.28), we find the tortoise coordinate z has the

expansion

z =

√
1 + ε2

1 − ε2
ρ+ O(ρ3). (5.29)

Using (5.28) and (5.29) in (4.22), after some algebra we find

Vs(z) = k2

(

v2
0 +

1

4
Ω2ε2z2 + βℓz

4 + . . .

)

+
αℓ

z2
+ γsℓ + O(z2) , (5.30)

where

v0 =
1 − ε2

1 + ε2
, (5.31)

Ω2 =
32(1 − ε2)2(1 + ε4)

(1 + ε2)5
, (5.32)

βℓ = −Ω2ε2
5 − 36ε2 + 28ε4 − 36ε6 + 5ε8

24(1 + ε2)3
, (5.33)

γ1ℓ =
ℓ(ℓ+ 2)

(

4
3 + 4ε2 + 4

3ε
4 + 4ε6 + 4

3ε
8
)

− 56ε4

(1 + ε2)3
, (5.34)

γ2ℓ = γ1ℓ +
80ε4

(1 + ε2)3
, (5.35)

and where αℓ is given by (5.8). We can understand why the leading difference between the

potentials V1 and V2 for the mesons ψ1 and ψ2 arises in this approximation in the constant

terms γ1ℓ and γ2ℓ as follows. We see from (4.22) that the difference between V1 and V2

comes only from m2
1 and m2

2, which do not enter multiplied by k2 and so cannot affect v0,

Ω2 or βℓ. Furthermore, m2
1 and m2

2 are curvature invariants, see (4.13), and must therefore

be smooth as ρ→ 0 because for Minkowski embeddings the D7 brane is smooth at ρ = 0.

This means that m2
1 and m2

2 cannot affect the coefficient of 1/z2 in (5.30).

We can now obtain the dispersion relations from the Schrödinger equations with po-

tentials (5.30) as we did in the previous subsection. After making the rescaling z = k−1/2ξ,

the Schrödinger equation (4.21) takes exactly the form (5.19), with

E =
1

k
(ω2 − v2

0k
2) , (5.36)
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where Ω and v0 are given by (5.31) and (5.32) respectively, and where Ṽs(z) contains only

terms that are subleading in the 1/k expansion, and is given by

Ṽs(z) =
1

k

(

γsℓ + βℓξ
4
)

+ O(k−2) . (5.37)

Thus, we find the large-k dispersion relation

ω2
s = k2v2

0 + kΩε(n+ 2) + dsnℓ + O(1/k) (5.38)

with

d1nℓ =
1

(1 + ε2)3

[

4

3
ℓ(ℓ+ 2)

(

1 + 3ε2 + ε4 + 3ε6 + ε8
)

−
(

5

4
− 9ε2 + 7ε4 − 9ε6 +

5

4
ε8
)

(n+ 2)2 − 56ε4
]

(5.39)

and

d2nℓ = d1nℓ +
80ε4

(1 + ε2)3
. (5.40)

Restoring dimensionful quantities in the dispersion relation (5.38), i.e. undoing (3.34),

means multiplying the k and constant terms by L0/R
2 and L2

0/R
4, respectively.

We can easily obtain an explicit expression for the wave functions themselves if we

neglect the βℓ, γsℓ and higher order terms, as the potential (5.30) is then that in the radial

wave equation for a four-dimensional harmonic oscillator. To this order, the wave functions

are given up to a normalization constant by

ψ = z3/2+ℓL(ℓ+1)
ν

(

1

2
Ωεkz2

)

exp

(

−1

4
Ωεkz2

)

, (5.41)

where, as before, ν = (n− ℓ)/2 is the order of the generalized Laguerre polynomial L
(ℓ+1)
ν .

The dispersion relations (5.38) are the central result of section 5. We shall ana-

lyze (5.38) and discuss its consequences at length in sections 5.4 and 6. First, however, we

close this more technical discussion with a few remarks related to the approximation that

we have used to obtain the large-k dispersion relations:

1. The wave function is localized at the tip of the brane, near ρ = 0 which is the fixed

point of the SO(4) symmetry at which the S3 shrinks to zero size and the fluctuations

are fluctuations in R4. This is the reason why we find a four-dimensional harmonic

oscillator.

2. Our approximation is valid for wave functions that are tightly localized near z = 0.

Evidently, this approximation must break down for mesons with high enough n, whose

wave functions explore more of the potential. More precisely, if we increase n and ℓ

while keeping ν fixed and small, the wave functions are peaked at z0 ∼
(

n
kΩε

)
1
2 with

a width 1

(kΩε)
1
2

. Or, if we increase n and ν while keeping ℓ fixed and small, the wave

functions become wider, with ν oscillations over a range of z from near zero to near
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z0 ∼
(

n
kΩε

)
1
2 and hence a wavelength ∼ 1

(nkΩε)
1
2

. In either case, our approximation

must break down for n ∼ k, since for n this large z0 is no longer small and the wave

function is no longer localized near z = 0.

3. We must ask at what k (or, at what ω) stringy effects that we have neglected through-

out may become important in the dispersion relations for the mesons that we have

analyzed. We can answer this question by comparing the length scale over which

the meson wave functions that we have computed varies to the string length scale

α′ 1
2 . Considering first the case where ν is small, we see from (4.18) that the proper

distance between the maximum of the wave function at z = z0 and the tip of the

brane at z = 0 is

l0 ∼
√

f(0)Rz0 ∼ 1 − ε2√
1 + ε2

R

(

4n

kΩε

)
1
2

(5.42)

and the width of the wave function is

δl ∼ 1 − ε2√
1 + ε2

R

(

1

kΩε

)
1
2

. (5.43)

Stringy effects can be neglected as long as δl ≫ α′ 1
2 , meaning

k < O(λ
1
4M) , (5.44)

where in the last expression we have restored the dimensions of k using (3.20)

and (3.34). (Since ω = v0k at at large k, this parametric criterion is the same

for ω as for k.) If ν is large, the wavelength of the wave function should be compared

to α′ 1
2 meaning that δl is reduced by a factor ∼ 1/

√
ν and stringy effects can be

neglected only as long as

k < O(λ
1
4M/ν) . (5.45)

We can conclude from either (5.44) or (5.45) that we are justified in using the disper-

sion relation that we have derived in the k → ∞ limit, as long as we take the λ→ ∞
limit first.6

4. Notice that as ε→ 1 (i.e. approaching the critical embedding), both v0 and Ω vanish.

Our approximation will therefore break down at the critical embedding. (One way

to see this is to note that in the leading terms in (5.30) we will then have zero

times infinity, meaning that it is no longer obvious that these are the leading terms.)

However, the first order phase transition occurs at ε = 0.756, long before this happens.

6Recall that although the mesons that we have focussed on have masses of order M ∼ mq/
√

λ, there

are also higher-lying stringy mesonic excitations with masses of order Mλ
1

4 ∼ mq/λ
1

4 . Requiring λ1/4 to

be large is what justifies our neglect of these stringy mesonic excitations, just as it justifies our neglect of

stringy corrections to the dispersion relations of the low-lying mesons. Note also that the latter becomes

important at an ω of order the mass of the former.
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Figure 7: Potential and ground state wave function for ψ1 (left three panels) and ψ2 (right three

panels) for k given by 5, 20 and 100 (top to bottom). All plots have ε = 0.756, corresponding

to the Minkowski embedding at the dissociation transition. V (z) and the ground state (n = ℓ =

0) solutions to the Schrödinger equation in the potentials V are both shown as solid lines, and

the ground state energies are indicated by the horizontal (red) lines. The dashed lines show the

approximation (5.41) to the wave functions.

5.3 Numerical results

We can also obtain the meson wave functions and dispersion relations numerically, without

making either a small ε or a large-k approximation. In this subsection we plot a few

examples of such results, and compare them to the analytic expressions that we have

derived above upon making the large-k approximation.

In figure 7 we plot the potentials (4.22) and ground state wave functions for those

potentials that we have obtained numerically for three values of k. Note the changing

vertical scale in the plots of V ; as k increases, V deepens. We see that as k increases and

the potential deepens, the wave function gets more and more localized near z = 0 and,

correspondingly, the expression (5.41) for the wave function that we have derived in the

large-k limit using the fact that the wave function becomes localized becomes a better and

better approximation to the exact wave function.
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Figure 8: Dispersion relations for the ground state ψ1 meson with n = ℓ = 0 at various values

of ε (i.e. at various temperatures). The top (red) curve is the zero temperature dispersion relation

ω =
√
k2 +m2 with m given by (3.17) and with a group velocity that approaches 1 at large k, as

required in vacuum by Lorentz invariance. The next three solid (black) curves are the dispersion

relations for ε = 0.25, 0.5 and 0.756, top to bottom, the latter corresponding to the Minkowski

embedding at the temperature Tdiss at which the first order phase transition occurs. The dashed

(red) lines are the large-k approximation discussed in section 5.4, given by ω(k) = v0k+ΩεL0/(v0R
2)

with Ω specified by (5.53). We see that the dispersion relations approach their large-k linear

behavior from below. The limiting velocity v0 decreases with increasing temperature. Had we

plotted dispersion relations for 0.756 < ε < 1 corresponding to metastable Minkowski embeddings

with T > Tdiss, we would have seen v0 → 0 as ε→ 1, approaching the critical embedding.

In figure 8 we show dispersion relations obtained numerically for the ground state ψ1

meson at several values of the temperature. At each k, we solve the Schrödinger equation

to find the ground state (using the shooting method) and from the eigenvalue we obtain

ω2 and hence a point on the dispersion relation. By doing this at many k’s, we obtain the

curves plotted. We also overlay the linear approximation to the large-k dispersion relations

that we shall discuss in section 5.4. In figure 9, we plot the corresponding group velocities.

5.4 Summary, limiting velocity and dissociation temperature

In this section we restate our central result for the dispersion relation and then discuss its

implications vis à vis a limiting velocity for mesons at a given temperature as well as a

limiting temperature below which mesons with a given velocity are found, and above which

they are not.

In section 5.2, we have derived the large-k approximation to the meson dispersion

relations at any temperature below the dissociation transition. We have checked this result

against numerical solutions valid at any k in section 5.3. We begin by restating the analytic
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Figure 9: Group velocities vg = dω/dk for the dispersion relations from figure 8, with ε = 0.25,

0.5 and 0.756 (top to bottom). We see that the group velocity approaches its large-k value v0 from

above. And, we see v0 decreasing with increasing temperature. (Again, v0 would approach zero if

we included the metastable Minkowski embeddings with T > Tdiss.)

result (5.38):

ω2 = v2
0k

2 + Ωε(n+ 2)
L0

R2
k + dsnℓ

L2
0

R4
,+O(1/k) (5.46)

where

v0 =
1 − ε2

1 + ε2
, Ω2 =

32(1 − ε2)2(1 + ε4)

(1 + ε2)5
. (5.47)

The constant term dsnℓ (which depends on whether we are discussing the ψ1 or ψ2 mesons

— s = 1 or s = 2 — and on the quantum numbers n and ℓ) was given in (5.39) and (5.40).

In writing the dispersion relation (5.46) we have restored dimensions by undoing the rescal-

ing (3.34). The dimensionful quantity that we had scaled out and have now restored can

be written as
L0

R2
=

(

2πmq√
λ

)
√

ǫ∞
ε
, (5.48)

where we have used (3.23), (3.32) and (3.33). The first factor in (5.48) is a (dimensionful)

constant. The quantity ǫ∞/ε appearing in the second, dimensionless, factor is weakly

temperature dependent: it can be read from figure 2, and is not constant to the degree

that the curve in this plot is not a straight line (in the relevant regime 0 < ε < 0.756,

as ε = 0.756 corresponds to T = Tdiss.) Although using dimensionless variables obtained

via scaling by the temperature-dependent L0/R
2 was very convenient in deriving all our

results, in plotting the dispersion relation and group velocity in figures 8 and 9 we have

instead plotted ω and k in units of Tdiss = 2.166mq/
√
λ, which is a relevant, constant,
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physical, quantity comparable in magnitude to L0/R
2. In the remainder of this section,

we shall analyze (5.46).

In the large-k limit, the asymptotic value of the group velocity dω/dk is given by

v0. This velocity decreases with increasing temperature, and vanishes as ε → 1 on the

critical embedding that separates Minkowski and black hole embeddings in figures 1 and 2.

At the temperature at which the first order dissociation transition occurs, ε = 0.756 and

v0 = 0.273.

There is a natural explanation within the dual gravity theory for how the asymptotic

velocity v0 can arise. Using (3.37), it is easy to show that v0 in (5.47) can also be written

as

v2
0 =

f(ρ = 0)

r2(ρ = 0)
, (5.49)

which we see from (3.35) is precisely the local speed of light at the tip of the D7-brane.

(The local speed of light is 1 at u = ∞, and decreases with decreasing u, decreasing to v0
at the tip of the D7-brane where ρ = 0 and u = y = 1.) Since we have seen that in the

large-k limit the wave function of the meson fluctuations becomes more and more localized

closer and closer to the tip of the D7-brane, this makes it natural that v0 emerges as the

asymptotic velocity for mesons with large k.

In the low temperature (equivalently, heavy quark) limit, we find (either directly

from (5.47) or, initially, in (5.27) in section 5.1) that

v2
0 ≈ 1 − 4ε2 . (5.50)

Since ǫ∞ ≈ ε at small ε, using (3.32) we have

v2
0 ≈ 1 − λ2T 4

16m4
q

, (5.51)

which is precisely the critical velocity (2.7) obtained in [23] from the screening calculation

as the velocity above which the potential between two moving quarks of mass mq cannot

be defined. This is the first of two quantitative comparisons that we will be able to make

between our present results for meson propagation and results obtained previously via the

screening calculation. We see from figure 10 that (5.50) works very well where T ≪ mq/
√
λ,

which is where it was derived (both here and in [22]).

In order to analyze (5.46) beyond the k2 term, it is instructive to rewrite it as a large-k

approximation to the dispersion relation ω itself rather than to ω2, yielding

ω(k) = v0k +
Ωε(n+ 2)L0

2v0R2
+

4dsnℓv
2
0 − Ω2ε2(n + 2)2

8v3
0

L2
0

R4

1

k
+ O(1/k2) , (5.52)

in the form we discussed in section 1. We see that the term linear in k in (5.46) yields a

constant shift in the meson energies in (5.52). Whereas v0 is independent of s, n and ℓ,

the constant term in (5.52) results in evenly spaced dispersion relations for mesons with

differing n quantum number, separated by

ΩεL0

2v0R2
=

(

2πmq√
λ

)

√

8ǫ∞ε(1 + ε4)

(1 + ε2)3
, (5.53)
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Figure 10: The asymptotic velocity v0 from (5.47) as a function of ε. The low temperature

approximation (5.50) is plotted as a dashed line. Recall that the dissociation transition occurs at

ε = 0.756.
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Figure 11: The k-independent spacing ΩεL0/2v0R
2 between the dispersion relations for any two

mesons whose n quantum numbers differ by 1, in units of Tdiss. See (5.53).

which we plot in figure 11.

If we neglect the O(1/k) and higher order terms in (5.52), the dispersion relations are

the same for mesons ψ1 and ψ2 and are independent of ℓ. These degeneracies are broken
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at order O(1/k), where dsnℓ first appears. We find that the coefficient of 1/k in ω(k)

of (5.52) is typically negative: it is negative at all ε < 1 if ℓ = 0 for any n; it can become

positive only if ε, n and ℓ are all large enough. When this coefficient is negative, it means

that ω(k) approaches its large-k asymptotic behavior (which is a straight line with slope

v0 offset by the constant term in (5.52)) from below. This means that d2ω/dk2 < 0 at

large k and means that the group velocity v = dω/dk approaches v0 from above at large

k, as shown in figure 9. However, at k = 0 the group velocity vanishes and d2ω/dk2 > 0.

(We have shown this analytically at small ε in section 5.1, see (5.11), and our numerical

results as in section 5.3 indicate that this is so at all ε.) So, as a function of increasing k,

the group velocity begins at zero, increases to some maximum value that is greater than

v0, and then decreases to v0 as k → ∞ as depicted in figure 9.7 Although v0 is not the

maximum possible group velocity, it appears that the maximal velocity exceeds v0 only by

a small margin. For example, for the ground state ψ1 meson whose dispersion relations

are given in figures 8 and 9, we find that v0 = 0.882, 0.6, and 0.273 for ε = 0.25, 0.5, and

0.756 whereas the maximal velocities are 0.896, 0.634 and 0.342, respectively. We shall

therefore simplify the following discussion by taking the maximal possible meson velocity

at a given temperature to be the limiting velocity v0, neglecting the slight imprecision that

this introduces.

We now wish to compare our results for the limiting meson velocity v0 at a given

temperature to the result (2.6) inferred (qualitatively) from the analysis of screening in a

hot wind in [23]. We must first convert v0(ε) into v0(T ), meaning that we must convert

from ε to ǫ∞ as discussed in and around figure 2. The result is the solid curve in the left

panel of figure 12, where we have plotted v0 versus T/Tdiss. We have derived this curve

as a limiting meson velocity at a given temperature. However, it can just as well be read

(by asking where it cuts horizontal lines rather than vertical ones) as giving Tdiss(v), the

temperature below which mesons with a given velocity v are found and above which no

mesons with that velocity exist. We see that Tdiss(v) → 0 for v → 1, the regime where v0
is given by (5.51) and Tdiss(v) is therefore given by (2.8). In order to compare our result

for Tdiss(v) at all velocities to (2.6), we parametrize our result as

Tdiss(v) = f(v)(1 − v2)1/4Tdiss(0) . (5.54)

In the left panel of figure 12 we compare our result (the solid curve) to (5.54) with f(v) set

to 1, which is of course (2.6). In the right panel, we plot f(v). We see that this function

is close to 1 at all velocities, varying between 1.021 at its maximum and 0.924 at v = 1.

The weakness of the dependence of f(v) on v is a measure of the robustness with which

the simple scaling (2.6) describes our result for the meson dissociation temperature at all

velocities.

7This behavior is not inconsistent with our identification of v0 with the local speed of light at the tip of

the brane: it is only for k → ∞ that the meson wave function is squeezed down to the tip of the brane; at

finite k, the wave function is peaked where the local speed of light exceeds v0.
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Figure 12: Left panel: The solid curve is the limiting velocity v0 as a function of T/Tdiss, where

Tdiss is the temperature of the dissociation transition at zero velocity. The dissociation transition

occurs at the dot, where v0 ≈ 0.273. The dashed curve is the approximation obtained by setting

f(v) = 1 in (5.54). Right panel: f(v), the ratio of the solid and dashed curves in the left panel at

a given v. We see that f(v) is within a few percent of 1 at all velocities.

6. Discussion and open questions

We have used the AdS/CFT correspondence to compute the dispersion relation ω(k) for

the heavy “quarkonium” mesons that exist as stable bound states in the strongly coupled

plasma of N = 4 SYM to which heavy fundamental quarks with mass mq have been added.

In section 4 we have introduced a new, and more geometrical, method of analyzing these

mesons that has allowed us, in section 5, to obtain the dispersion relations at large-k

analytically in the form (5.52), which we can summarize as in section 1 by writing

ω(k) = v0k + a+
b

k
+ . . . . (6.1)

We have computed a and b explicitly and analytically in section 5, but at present we have

no argument that the behavior of these coefficients, which depend on the meson quantum

– 40 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
9

numbers, could teach us lessons that generalize beyond the particular theory in which we

have computed them. On the other hand, the limiting large-k meson velocity v0 seems to

encode much physics that may generalize to meson bound states in other strongly coupled

gauge theory plasmas.

• Our explicit result is

v0 =
1 − ε2

1 + ε2
, (6.2)

where ε is related to ǫ∞ = λT 2/(8m2
q) as in figure 2. We see that v0 depends on the

temperature (in the combination
√
λT/mq) but not on the meson quantum numbers.

We see in figures 8 and 9 that v0 decreases with increasing temperature, becoming

much less than 1 as the temperature approaches Tdiss, the temperature at which

mesons at rest dissociate. We see in these figures that the coefficient b in (6.1) can

be negative, meaning that the group velocity approaches its large-k value v0 from

above. Thus, v0 is the limiting meson velocity at large k, but the maximal velocity

occurs at finite k and is slightly larger than v0. We describe this quantitatively in

section 5, but it is a small effect and in this discussion we shall ignore the distinction

between v0 and the maximal velocity.

• We find that v0, which in the gauge theory is the limiting velocity of the mesons

that they attain at large k, also has a nice interpretation in the dual gravity theory.

It is precisely the local velocity of light at the “tip” of the D7-brane, namely where

the D7-brane reaches closest to the black hole. This is physically sensible because

we have shown that the D7-brane fluctuations — i.e. the mesons in the dual gravity

theory — are localized at the D7-brane tip in the large-k limit.

• At low temperatures or, equivalently, for heavy quarks we find

v0 ≈ 1 − λ2T 4

32m4
q

. (6.3)

This is precisely, i.e. even including the numerical factor, the criterion for meson

dissociation inferred from a completely different starting point in [23]. The logic

there was that the screening length that characterizes the potential between a quark

and antiquark moving with v > v0 is shorter than the quark Compton wavelength,

meaning that if a quark and antiquark moving with v > v0 are separated by more

than a Compton wavelength, to leading order in
√
λ they feel no attractive force. By

inference, no mesons should exist with v > v0. We now see this result emerging by

direct calculation of meson dispersion relations, rather than by inference.

• We have a result for v0(T ), the limiting velocity beyond which there are no meson

bound states, at all T < Tdiss not just at low temperatures, see figure 12. We can

just as well read this as determining a temperature Tdiss(v) above which no meson

bound states with velocity v exist. We find that up to few percent corrections, see

figure 12, this is given by

Tdiss(v) = (1 − v2)1/4Tdiss . (6.4)
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Once again, this is a result that was previously inferred from analysis of the velocity

dependence of the screening length characterizing the potential between a quark and

antiquark moving through the plasma [22]. We have now derived this result and

the (few percent) corrections to it for the mesons whose dispersion relations we have

explicitly constructed. We should also note that it is a slight abuse of terminology

to call Tdiss(v) at v > 0 a “dissociation” temperature: although it is a temperature

above which no mesons with velocity v exist, if we imagine heating the plasma through

Tdiss(v) we have not shown that any mesons present therein dissociate — they may

simply slow down. The question of what happens in this hypothetical context is a

dynamical one that cannot be answered just from the dispersion relations we have

analyzed.

• As we discussed in section 2, the result (6.4) can be read as saying that no mesons

with velocity v exist when the energy density of the strongly coupled plasma exceeds

ρdiss(v) where, up to small corrections,

ρdiss(v) = (1 − v2)ρdiss , (6.5)

with ρdiss the energy density at which mesons at rest dissociate. Correspondingly,

the low temperature result (6.3) can be written as

1 − v0 = constant
ρ

ρdiss
, (6.6)

valid when ρ ≪ ρdiss and v0 is close to 1. Thinking as in [38], we can ask whether

the same result holds in other theories. It will be interesting to address this question

in (3 + 1)-dimensional gauge theories that are in various senses more QCD-like than

N = 4 SYM. At present, however, we have only investigated the (p+ 1)-dimensional

gauge theories described by N Dp-branes [55] into which fundamental quarks, and

hence mesons, have been introduced by embedding a Dq-brane [56, 48, 49, 29]. The

Dp-branes fill coordinates 0, 1, . . . , p. The Dq-brane fills the first d + 1 of these

coordinates 0, 1, . . . , d, where d may be less than or equal to p, as well as q − d of

the remaining 9 − p coordinates. In appendix B, we sketch an investigation of those

theories for which p − d + q − d = 4. (The case that we have analyzed throughout

the rest of this paper is p = d = 3, q = 7.) These theories are not conformal for

p 6= 3, as their coupling constant λ has dimension p− 3. It is convenient to introduce

a dimensionless λeff ≡ λT p−3. We have not repeated our entire construction for

the Dp-Dq-brane theories. However, we expect that the wave functions for large-k

mesons will again be localized at the tip of the Dq-brane, and therefore expect that

in these theories v0 will again be given by the local velocity of light at this location.

We compute this velocity in appendix B. Assuming that this is indeed the limiting

meson velocity, we find

v0 =

(

1 − ε(7−p)/2

1 + ε(7−p)/2

)

, (6.7)
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where ε is given at small T/mq by

ε ≈ ǫ∞ ∝
(

T

mq

)2

λ
2/(5−p)
eff =

λ2/(5−p)T 4/(5−p)

m2
q

. (6.8)

(Relating ε to ǫ∞ beyond the small T/mq limit requires solving the embedding equa-

tion given in appendix B.) In these theories, the energy density of the plasma depends

on parameters according to [55]

ρ ∝ N2T p+1λ
(p−3)/(5−p)
eff = N2λ(p−3)/(5−p)T (14−2p)/(5−p) , (6.9)

and zero-velocity mesons dissociate at some energy density ρdiss corresponding to

ε = εdiss where εdiss = O(1). From these results we notice that at small ε

ε(7−p)/2 ∝ λ(7−p)/(5−p)T (14−2p)/(5−p)

m7−p
q

∝ ρ

ρdiss
, (6.10)

meaning that the velocity v0 of (6.7) can be written in the form (6.6) for all values of

p! In appendix B, we describe the verification that (6.4) also holds, but only when

phrased as in (6.5) in terms of energy density rather than temperature.

Emboldened by these successes, we advocate investigating the consequences that follow

from hypothesizing that Υ and J/Ψ mesons in the strongly coupled quark-gluon plasma

of QCD propagate with a dispersion relation (6.1) with v0 dropping dramatically as the

temperature approaches Tdiss from below, and with no bound states with velocity v possible

if T > Tdiss(v) given by (6.4). In applying (6.4) to QCD, it is important to scale Tdiss(v)

relative to the Tdiss for Υ and J/Ψ mesons in QCD itself. The result Tdiss = 2.166mq/
√
λ

for the mesons that we have analyzed is surely affected by the fact that they are deeply

bound and so should not be used as a guide to quarkonia in QCD. For example, it seems to

overestimate Tdiss for J/Ψ mesons by a factor of 2 or 3. However, as argued in [22, 23] and

as we have discussed above, the velocity scaling (6.4) may transcend the detailed meson

physics in any one theory and apply to mesonic bound states in any strongly coupled

plasma. The successful comparison of our detailed results to this simple scaling form

supports this conjecture.

As we have explained at length in section 1, meson propagation is only one piece of the

physics that must be treated in order to understand quarkonium suppression in heavy ion

collisions. Introducing the dispersion relation and limiting velocity that we have found into

such a treatment is something we leave to the future, instead making only a few qualitative

remarks.

First, from the dispersion relations alone we cannot conclude that if a quark-antiquark

pair is produced (from an initial hard scattering) with a velocity v > v0(T ), with v0(T )

the limiting meson velocity in the plasma of temperature T in which the quark-antiquark

pair finds itself, then the quark-antiquark pair do not bind into a meson. The reason that

we cannot make this inference is that the dispersion relations describe stable mesons with

arbitrarily large momentum k, making it a logical possibility that a high velocity quark-

antiquark pair with arbitrarily high momentum interacts with the medium in some way
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such as to slow down and lose energy while conserving its momentum, and thus in some

way dresses itself into a meson with arbitrarily high momentum k, and velocity v0. That

is, since the dispersion relations describe the propagation of mesons with arbitrarily large

momentum, by themselves they do not require that quarkonium production is suppressed

when the precursor quark-antiquark pair has velocity v > v0(T ). Excluding this possibil-

ity, allowed by the kinematics, requires some consideration of the dynamics. The heuristic

argument of [23] provides guidance: the precursor quark-antiquark pair with v > v0(T )

do not attract each other and so even though it is kinematically allowed by the meson

dispersion relations for them to slow down and form a meson, instead they will propa-

gate independently through the medium. Thus, the pT -dependent quarkonium suppression

pattern proposed in [22], with the production of quarkonium states with Tdiss higher than

the temperature reached in a given heavy ion collision experiment nevertheless becoming

suppressed above a threshold transverse momentum at which a quark-antiquark pair with

that transverse momentum has velocity v0(T ), rests upon the dynamical argument of [23].

It is natural that analyzing quarkonium suppression requires consideration of both the pre-

cursor quark-antiquark pair and the putative meson, and only the latter is described by

the meson dispersion relation. It is then nice to discover that the limiting meson velocity

v0(T ) agrees precisely with the velocity at which quark-antiquark pairs can no longer feel

a force at order
√
λ.

We have just argued that the very large-k region of the meson dispersion relation

is unlikely to be populated in heavy ion collisions. But, whether or not such large-k

modes are excited, it is clear from figure 8 that at temperatures near to Tdiss mesons

at any k move much more slowly than they would if they propagated with their vacuum

dispersion relation. There are several in-principle-observable signatures of the slow velocity

of quarkonium mesons. First, it increases the separation in space long after the collision

between those mesons that are produced at the surface of the fireball moving outwards,

and hence escape into vacuum promptly, and those which are produced in the center of

the plasma and hence move more slowly than if they had their vacuum dispersion relation.

An increase in the typical separation of identical mesons because of this slow velocity

effect will shift the onset of Bose-Einstein enhancement in the two particle momentum

correlation to a lower relative momentum. This simple idea underlies a technique widely

used in heavy ion physics and often referred to as Hanbury-Brown Twiss (HBT) two-

particle interferometry, in which identical two-particle momentum correlations are used to

determine spatio-temporal characteristics of the collision region. For a review, see ref. [57].

Quarkonium HBT interferometry would thus in principle be able to find signatures of

a depressed meson velocity. Second, non-identical two-particle correlation functions are

sensitive to whether one particle species A is emitted from the medium on average before

or after another particle species B. Such a difference in average emission times could result,

for instance, if the maximal velocities in the dispersion relations for A and B differ because

of their different mass. The analysis of the effect of a difference in average emission times

on non-identical two-particle correlation functions can be found in [58]. In principle, this

provides a second way of finding signatures of a depressed velocity for those mesons for

which the plasma reaches temperatures close to their dissociation temperature.
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Quarkonium mesons in the quark-gluon plasma of QCD have nonzero width. In con-

trast, the mesons we have analyzed at T < Tdiss are stable, with zero width. The dispersion

relations that we have found have no imaginary part. This is certainly an artifact of the

large number of colors N and large coupling λ limits that we have taken throughout. Pro-

cesses in which one meson decays into two mesons are suppressed by 1/N . And, thermal

fluctuations which unbind a meson whose binding energy is 2mq are suppressed by the

Boltzmann factor

exp(−2mq/T ) = exp(−0.92
√
λTdiss/T ) , (6.11)

which at some fixed T/Tdiss is nonperturbative in an expansion about infinite λ. A calcu-

lation of the imaginary part of the meson dispersion relations at finite λ remains for the

future, but this simple consideration is enough to be sure that it is nonzero, as is the case in

QCD at weak coupling [11]. As soon as the mesons have nonzero width, their slow velocity

has a further consequence in the context of heavy ion collisions: because they move more

slowly, they spend a longer time in the medium giving the absorptive imaginary part more

time to effect the dissociation of the meson than would otherwise be the case.

Our discussion in this section has highlighted three different avenues of further in-

vestigation opened up by our analysis of meson dispersion relations in a strongly coupled

gauge theory plasma. The first is the investigation of the phenomenological consequences

for J/Ψ and Υ suppression in heavy ion collisions of a dispersion relation of the form (6.1)

with (6.4). Second, it appears to us that the most interesting open question about the

mesons whose dispersion relations we have analyzed is extending the calculation to finite λ

and analyzing the width of the mesons. And, third, we could gain significant confidence in

the application of the lessons we have learned to QCD by repeating our analysis for heavy

quark mesons in the plasma of other strongly coupled gauge theories, in particular those

with a controlled degree of nonconformality.
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A. General discussion of brane embedding and fluctuations

In this appendix we present a general discussion of brane embedding in a curved spacetime

(in the absence of fluxes) and its small fluctuations. We then specialize to the case of

D7-branes embedded in the AdS5 × S5 black hole geometry.
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A.1 General discussion

Consider a p+ 1-dimensional brane in a D-dimensional target space whose action is

SDp = −µp

∫

dp+1ξ

√

−deth̃ij , (A.1)

where ξi, i = 0, 1, . . . , p denote the worldvolume coordinates and h̃ij is the induced metric

in the worldvolume

h̃ij = Gµν(X)
∂Xµ

∂ξi

∂Xν

∂ξj
, µ = 0, 1, . . . ,D − 1 . (A.2)

Suppose that Xµ
0 (ξi) solves the equations of motion following from (A.1), thus describing

an embedding of the brane in the target spacetime. We are interested in understanding

the behavior of small fluctuations around X0. For this purpose, let

Xµ(ξ) = Xµ
0 (ξi) + δXµ(ξi) . (A.3)

The action for δXµ can then be obtained straightforwardly from (A.1). The resulting

action and equations of motion for δXµ are, however, not geometrically transparent. This

is due to the fact that δXµ(ξi) is the difference between coordinates and thus does not have

good properties under coordinate transformations. A more convenient way to parameterize

δXµ(ξ) is to use the exponential map to express it in terms of a vector in the tangent space

at Xµ
0 , as we now describe. (Such techniques have also been used in the calculation of

string worldsheet beta functions [59].) Given a vector ηµ, we shoot out geodesics of unit

affine parameter from X0 with tangent ηµ. The end point of such a geodesic is identified

with Xµ
0 + δXµ. Such a map should be one-to-one within a small neighborhood of X0. To

second order in η one may solve the geodesic differential equation, finding

δXµ = ηµ − 1

2
Γµ

αβ(X0)η
αηβ + . . . . (A.4)

Note that the appearance of Γ is consistent with the coordinate dependence of δX; they

can both be shown to have the same variation under a coordinate transformation.

Using the parametrization (A.4), we find that

h̃ij = Gµν(X0 + δX)∂i(X
ν
0 + δXν)∂j(X

µ
0 + δXµ) (A.5)

= hij + 2Gµνλ
µ
(i∇j)η

µ +Gµν∇iη
µ∇jη

ν + ηαηβλµ
(iλ

ν
j)Rνβαµ

with

hij = Gµν(X0)∂iX
µ
0 ∂jX

ν
0 = λµ

i λjµ, ∇i = λµ
i ∇µ, λµ

i = ∂iX
µ
0 . (A.6)

”where λµ
i are vector fields along the brane directions. The simplest way to find (A.5) is

to use the Riemann Normal coordinates at X0 in which the Christoffel symbols vanish. hij

is the induced metric in the worldvolume theory and below indices i, j will be raised and

lowered by h. To quadratic order in η we have
√

−deth̃ij =
√

−dethij

(

1 + λi
ν∇jη

ν +
1

2
∇iηµ∇iηµ − (λiµ∇jη

µ)(λ(i
ν ∇j)ην)

+
1

2
(λi

ν∇iη
ν)2 +

1

2
ηαηβhijλµ

i λ
ν
jRαµνβ

)

. (A.7)
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We now take ηµ to be orthogonal to the brane worldvolume (which corresponds to choosing

the static gauge), i.e.

ηµ = χsn
µ
s (X0), s = 1, . . . ,D − p− 1 , (A.8)

where ns(X0) are unit vectors orthogonal to the worldvolume direction. Note that λµ
i and

nµ
s together span the full tangent space at X0. i.e.

λµ
i nsµ = 0, nsµn

µ
t = δst, λµ

i λ
j
µ = δj

i , (A.9)

and

δµ
ν = λµ

i λ
i
ν + nµ

snsν . (A.10)

We now introduce

Ksij = λµ
i λ

ν
j∇µnsν, Ks = Ksijh

ij , U i
st = nν

s∇intν = nν
sλ

µ
i ∇µntν . (A.11)

Ksij is the extrinsic curvature of the brane in the s-direction, and is symmetric in i, j.

(This follows from the fact that a surface orthogonal to nµ
s satisfies ∇[µn

t
ν] =

∑

s v
s
[µn

s
ν] for

some one-form vs
µ. Note also that Ksij can be written as Ksij = 1

2Lnshij , where Ln is the

Lie derivative along n-direction.) U i
st, which is antisymmetric in s, t, is an SO(D − 1 − p)

connection for the transverse directions. Note that the choice of nµ
s (and thus χs) is

not unique. One can choose a different set of basis vectors by making an arbitrary local

SO(D − 1 − p) transformation. Thus χs transforms as a vector under the SO(D − 1 − p)

“gauge” symmetry and U i
st transform as a connection. Note that this gauge symmetry is

not dynamical. With these definitions we can now write

∇iηµ = (Diχs)nsµ +Ksijχsλ
j
µ , (A.12)

where

Diχs = ∂iχs + Uistχt (A.13)

is an SO(D − p− 1) covariant derivative. Using (A.12) in (A.7), we now find that

SDp = − µp

∫

dp+1ξ
√

−dethij

(

1 + χsKs +
1

2
DiχsD

iχs (A.14)

+
1

2
χsχt

(

−KsijK
ij
t +Rsijth

ij +KsKt

)

)

with Rsijt = nα
s n

β
t λ

µ
i λ

ν
jRαµνβ . For X0 to satisfy the equations of motion, the terms

in (A.14) that are linear in the χ’s have to vanish. This implies that

Ks = Ksijh
ij = 0, s = 1, . . . ,D − p− 1 . (A.15)

These are the embedding equations for the background. Thus, the action (A.14) for the

small fluctuations to quadratic order becomes

SDp = µp

∫

dp+1ξ
√

−dethij

(

−1

2
DiχsD

iχs − 1

2
χsχt

(

−KsijK
ij
t +Rsijth

ij
)

)

. (A.16)
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We have used both the embedding equations (A.15) and the action for the small fluctua-

tions (A.16) in section 4.

The action (A.16) can be further simplified if nµ
s satisfies additional constraints. For

example, if nµ
s is proportional to a Killing vector, then

Ksij = 0 . (A.17)

This follows from the fact that nµ
s satisfies ∇(µn

s
ν) = v(µn

s
ν) for some vµ. If in addition nµ

s

is a hypersurface orthogonal, i.e. if it satisfies ∇[µn
s
ν] = w[µn

s
ν] for some one form wµ, then

Uist = 0, for all t . (A.18)

We have used this simplification in section 4.

Finally, note that equation (A.16) was written using the coordinate split (A.9). One

can write it and other equations in a more covariant way by introducing

hµν = hijλiµλjν , hµ
ν = hijλiµλ

ν
j , hµν = hijλµ

i λ
ν
j , (A.19)

and using these objects in place of hij and λµ
i in various places. hµν = gµν − nsµnsν is

the covariant induced metric on the brane and hµ
ν is the projector onto the worldvolume

directions.

A.2 D7-branes in AdS5 × S5 black hole

We now specialize to the case of D7-branes considered in the main text, where we have

two transverse directions with

nν
1 =

1

N1

((

∂

∂y

)ν

− y′0(ρ)

(

∂

∂ρ

)ν)

, nν
2 =

1

N2

(

∂

∂φ

)ν

, (A.20)

whereN1,2 are normalization factors. In this case U i
st is proportional to the two-dimensional

antisymmetric tensor ǫst. It is easy to see that nν
2 is both hypersurface orthogonal and

proportional to a Killing vector (since nothing depends on φ). We thus have K2ij = 0 and

U i
12 = 0. The action (A.16) now reduces to the form we have used in section 4, namely

SD7 = µ7

∫

d8ξ
√
−h
(

1 +
1

2
(∂φ1)

2 +
1

2
(∂φ2)

2 +
1

2
m2

1φ
2
1 +

1

2
m2

2φ
2
2

)

, (A.21)

where the “masses” are given by

m2
1 = −R11 −R2112 −K1ijK

ij
1 , (A.22)

m2
2 = −R22 −R2112 , (A.23)

with R2112, R11 and R22 as defined in (4.14). In writing (A.21)–(A.23) we have used the

identities

Rsijth
ij = nα

s n
β
t h

ijλµ
i λ

ν
jRαµνβ = −Rst −Rs11t −Rs22t, s, t = 1, 2 (A.24)
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and the fact that R12 = 0 for the AdS5 × S5 black hole spacetime. We can also use the

generalization of the Gauss-Codazzi relation for a codimension two surface which we derive

in section A.3, see eq. (A.28), to write

K1ijK
ij
1 = − (8)R +R− 2R11 − 2R22 − 2R2112 . (A.25)

Therefore, m2
1 in (A.22) can equivalently be written as

m2
1 = R11 +R2112 + 2R22 + (8)R −R , (A.26)

which is the form that we used in section 4.

A.3 Gauss-Codazzi relations for co-dimension 2

Define the covariant derivative on the D7 brane as

Dαs
β ≡ hµ

αh
β
ν∇µs

ν . (A.27)

This is equivalent to the covariant derivative defined with respect to hij . We can now use

Dα to define the curvature of the D7-brane and then relate it to the curvature of the full

space. Calculations similar to those in [60] reveal that

(8)R l
ijk = P (R) l

ijk + (Ks)ik(K
s)lj − (Ks)jk(K

s)li , (A.28)

where s labels the two directions perpendicular to the brane and is summed over. P (R) is

the projection of the full Riemann tensor onto the D7-brane,

P (R) l
ijk = λµ

i λ
ν
jλ

α
kλ

l
βR

β
µνα . (A.29)

Taking further contractions of eq. (A.28) with δl
j and hik and using eq. (A.10) gives

(8)R = R− 2Rss −Rtsst +KsKs − (KsijK
ij
s ) , (A.30)

where s, t are both summed. In the case of interest, where K2ij = 0 because nµ
2 is propor-

tional to a Killing vector and where Ks = 0 is the embedding equation, we obtain (A.25).

B. Dp-Dq-brane theories

It will be of interest in future to study the degree to which the meson dispersion relations

that we have derived, together with their consequences like (6.3) and (6.4), change as one

modifies the gauge theory to make it more QCD-like. In this appendix, we report on a

check that we have mentioned in section 6 in which the gauge theory is modified, albeit not

in the direction of QCD. We consider the (p+ 1)-dimensional gauge theories described by

N Dp-branes [55] into which fundamental quarks, and hence mesons, have been introduced

by embedding Nf Dq-branes [56, 48, 49, 29]. The Dp-branes fill coordinates 0, 1, . . . , p.

The Dq-branes fill coordinates 0, 1, . . . , d, where d ≤ p, as well as q − d of the remaining

9 − p coordinates. In the large-N limit, the near horizon geometry of the Dp-branes is

dual to a (p+1)-dimensional supersymmetric Yang-Mills theory with 16 supercharges that
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is nonconformal for p 6= 3. We will restrict to p < 5. In the Nf/N → 0 approximation,

the Dq-branes live in the background Dp-brane geometry, and their back-reaction on the

geometry can be neglected. Strings which stretch between the Dq- and the Dp-branes are

dual to Nf fundamental quarks in the gauge theory. We shall set Nf = 1. And, scalar

mesons in the gauge theory are represented by fluctuations of the position of the Dq-brane.

The specific case that we have analyzed throughout most of this paper is p = d = 3, q = 7.

In this more general setting, as in the specific case, there is a dissociation transition at some

Tdiss at which the spectrum of meson fluctuations changes from discrete to continuous.

The background Dp-brane geometry is described by the metric [55]

ds2 =R2

(

R

L0

)(3−p)/2(

− fdt2 + r(7−p)/2dx2
p (B.1)

+
r(p−3)/2

u2

(

dρ2 + dy2 + ρ2dΩ2
q−d−1 + y2dΩ2

8−p−q+d

)

)

and the dilaton

eφ =

(

L0

R

)(p−3)(7−p)/4

gsr
(p−3)(7−p)/4 , (B.2)

where

f = u−(7−p)/2

(

u7−p − ε(7−p)/2
)2

u7−p + ε(7−p)/2
, (B.3)

r(7−p)/2 = u−(7−p)/2
(

u7−p + ε(7−p)/2
)

, (B.4)

u2 = y2 + ρ2 , (B.5)

and where we are using dimensionless coordinates as in (3.35). The black hole horizon is

located at u = u0 ≡ √
ε. L0 specifies the position where the Dq-brane that we introduce

will sit, as follows. We shall embed a Dq-brane described, in the absence of fluctuations, by

a curve y(ρ) with the Dq-brane placed such that its tip is located at ρ = 0 and y = L0, and

then use L0 to rescale metric coordinates such that the tip of the Dq-brane is at y(0) = 1.

After this rescaling, the metric and dilaton are given by (B.1) and (B.2). The holographic

dictionary determines the coupling, number of colors, and temperature in the gauge theory

via

λ =
(16π3)(p−3)/2

Γ
(

7−p
2

) R7−pα′p−5 , (B.6)

λ

N
= 2p−1πp−2gsα

′(p−3)/2 , (B.7)

T =
(7 − p)2(5−p)/(7−p)

4π
u

(5−p)/2
0 R−1

(

L0

R

)(5−p)/2

. (B.8)

Note that λ has dimension p− 3, making it useful to define the dimensionless coupling

λeff ≡ λT p−3 . (B.9)
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The differential equation that specifies the shape of the embedding curve y(ρ) can be

derived as we did in obtaining (3.31). For the special case in which p− d+ q − d = 4, the

embedding equation simplifies, becoming

y′′

1 + y′2
+

(q − d− 1)y′

ρ
=

2ε(7−p)/2(y − y′ρ)

u2

(

(3 − d)u7−p + (q − d)ε(7−p)/2

u2(7−p) − ε7−p

)

. (B.10)

We have scaled our variables so that the tip of the Dq-brane is at y(0) = 1; in order to have

a smooth embedding we require y′(0) = 0; using these boundary conditions, we can then

solve the embedding equation and obtain y(∞), which defines ǫ∞ via y(∞) =
√

ε/ǫ∞, .

Finally, we can determine what the mass mq of the quarks that we are analyzing is via

m2
q =

εL2
0

4π2ǫ∞α′2 . (B.11)

From (B.6), (B.8) and (B.11) we find that

ǫ∞ = ap

(

T

mq

)2

λ
2/(5−p)
eff = ap

λ2/(5−p)T 4/(5−p)

m2
q

, (B.12)

where the constant ap is given by

ap =
2(10−2p)/(7−p) π(3−p)/(5−p)

(7 − p)4/(5−p)

(

Γ

(

7 − p

2

))2/(5−p)

. (B.13)

We also note that the energy density of the plasma is given by [55]

ρ = bpN
2T p+1λ

(p−3)/(5−p)
eff = bpN

2λ(p−3)/(5−p)T (14−2p)/(5−p) , (B.14)

where the constant bp is given by

bp =
(9 − p) 26 π(13−3p)/(5−p)

(7 − p)(19−3p)/(5−p)

(

Γ

(

7 − p

2

))2/(5−p)

. (B.15)

This means that
(

ǫ∞
ǫdiss
∞

)(7−p)/2

=
ρ(T )

ρdiss
, (B.16)

where the zero-velocity mesons dissociate at a temperature Tdiss corresponding to ρ = ρdiss

and ǫ∞ = ǫdiss
∞ , with ǫdiss

∞ a constant of order unity.

We shall not repeat our construction of the meson wave functions and dispersion

relations for the Dp-Dq system here. Instead, we shall assume that in the large-k limit the

meson wave functions become localized at the tip of the Dq brane at ρ = 0 and y = 1,

as we found for the D3-D7 system. As a consequence, the limiting meson velocity will be

given by the local speed of light at the tip of the Dq-brane. This velocity can be read from

the metric (B.1), and is given by

v0 =

(

1 − ε(7−p)/2

1 + ε(7−p)/2

)

. (B.17)
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In section 6 we have analyzed this result in the small ε limit, showing that in this limit it

takes on the form (6.6) for any p. This illustrates the generality of the result (6.3) when it

is phrased in terms of the energy density. Here, we shall analyze (B.17) at arbitrary ε < 1,

seeking to compare it to (6.4). From (B.17) and (B.16) we see that the critical velocity

satisfies
1 − v0
1 + v0

=
1 − v2

0

(1 + v0)2
= ε(7−p)/2 =

ρ

ρdiss

(

ǫdiss
∞

ε

ǫ∞

)(7−p)/2

. (B.18)

Recall that ǫdiss
∞ is a constant of order unity and that ε/ǫ∞ is a weak function of temperature

and hence of ρ, obtained by solving the embedding equation and making a plot of ǫ∞ vs.

ε as in figure 2, and reading off the ratio.

Much as we did in section 6, we can see (B.18) either as giving the limiting velocity

v0 as a function of ρ, or as giving ρdiss(v), the energy density above which no mesons with

velocity v exist, via

ρdiss(v) = (1 − v2)ρdiss

[

1

(1 + v)2

(

ǫdiss
∞

ε

ǫ∞

)(p−7)/2
]

. (B.19)

This is the generalization of (6.4) to the Dp-Dq system. It is written somewhat implicitly,

since ε/ǫ∞ which occurs within the square brackets is a weak function of ρdiss(v). It is

nevertheless manifest that the entire expression in the square brackets is a weak function

of v, varying from one constant of order one at v = 0 to some different constant of order

one at v = 1. As in (5.54), we can then define a function f(v) by rewriting (B.19) as

ρdiss(v) = [f(v)](14−2p)/(5−p) ρdiss(0)

γ2
, (B.20)

where γ = 1/
√

1 − v2 is the Lorentz boost factor. Equivalently, using (B.14) we can write

Tdiss(v) = f(v)
Tdiss(0)

γ(5−p)/(7−p)
. (B.21)

We have seen in figure 12 that for the D3-D7 brane system, f(v) is everywhere close to

1, with f(1) = 0.924 being the farthest it gets from 1. We have also done the exercise of

solving the embedding equations for p = 4, the D4-D6 brane system with d = 3, and find

in that case that the farthest that f(v) gets from f(v) = 1 is f(1) = 1.048.

Given its derivation via (B.18), it would have been reasonable to try writing

ρdiss(v) =
[

f̃(v)
](14−2p)/(5−p)

ρdiss(0)
1 − v

1 + v
(B.22)

instead of (B.20). This does not work as well, yielding a f̃(v) that reaches 1.306 for

the D3-D7 system and 1.261 for the D4-D6 system. So although there is no important

parametric difference between (B.22) and (B.20), we have focussed on the form (B.20),

and hence (B.21), throughout this paper.

The most important conclusion from our Dp-Dq investigation in this appendix comes

by comparing (B.20) and (B.21). We see that in all the Dp-Dq systems we analyze, the

leading velocity dependence of ρdiss(v) is that it is proportional to 1/γ2, as if the mesons

see a boosted energy density as we discussed in section 2. In contrast, Tdiss(v) scales with

a power of γ that depends on p.
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